机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2015年
6期
165-172
,共8页
连培园%朱敏波%王伟%杨癸庚
連培園%硃敏波%王偉%楊癸庚
련배완%주민파%왕위%양계경
反射面天线%热模型%温度预估%温度试验
反射麵天線%熱模型%溫度預估%溫度試驗
반사면천선%열모형%온도예고%온도시험
reflector antenna%thermal model%temperature estimation%temperature experiment
针对反射面天线多工况及太阳位置时变而导致温度场无规律分布问题,根据反射面天线轴对称的特性,将温度场描述为太阳光线与口径面夹角的函数,提出一种实时预估天线温度场的方法。建立天线热分析模型,在垂直口径面的某个平面内,计算太阳光线与口径面不同夹角时天线温度分布规律并建立温度数据表;根据当前工况查表获得相应温度分布并对其进行旋转变换,由实测数据对其进行修正,从而获得当前时刻天线温度场的估计值。以某7.3 m口径Ka波段轴对称反射面天线为工程案例,对仿真温度和实测温度分别进行预估,预估温度与仿真、实测温度均吻合较好。结果表明该方法简单、快速、有效,可用于轴对称反射面天线热变形的实时补偿,对天线结构设计亦有一定参考价值。
針對反射麵天線多工況及太暘位置時變而導緻溫度場無規律分佈問題,根據反射麵天線軸對稱的特性,將溫度場描述為太暘光線與口徑麵夾角的函數,提齣一種實時預估天線溫度場的方法。建立天線熱分析模型,在垂直口徑麵的某箇平麵內,計算太暘光線與口徑麵不同夾角時天線溫度分佈規律併建立溫度數據錶;根據噹前工況查錶穫得相應溫度分佈併對其進行鏇轉變換,由實測數據對其進行脩正,從而穫得噹前時刻天線溫度場的估計值。以某7.3 m口徑Ka波段軸對稱反射麵天線為工程案例,對倣真溫度和實測溫度分彆進行預估,預估溫度與倣真、實測溫度均吻閤較好。結果錶明該方法簡單、快速、有效,可用于軸對稱反射麵天線熱變形的實時補償,對天線結構設計亦有一定參攷價值。
침대반사면천선다공황급태양위치시변이도치온도장무규률분포문제,근거반사면천선축대칭적특성,장온도장묘술위태양광선여구경면협각적함수,제출일충실시예고천선온도장적방법。건립천선열분석모형,재수직구경면적모개평면내,계산태양광선여구경면불동협각시천선온도분포규률병건립온도수거표;근거당전공황사표획득상응온도분포병대기진행선전변환,유실측수거대기진행수정,종이획득당전시각천선온도장적고계치。이모7.3 m구경Ka파단축대칭반사면천선위공정안례,대방진온도화실측온도분별진행예고,예고온도여방진、실측온도균문합교호。결과표명해방법간단、쾌속、유효,가용우축대칭반사면천선열변형적실시보상,대천선결구설계역유일정삼고개치。
For the irregular temperature field caused by the multiple conditions of reflector antenna and the change of solar directon, temperature field can be described as a function of the angle between sunlight and aperture plane, based on which, a method of estimating temperature field in real-time is presented. A thermal analysis model is founded and a temperature data sheet is built by calculating the temperature fields under different angles between sunlight and antenna aperture plane. According to current working condition, corresponding temperature field can be obtained by looking-up the temperature data sheet, performing rotation, and being corrected by the measuring temperature values. For this engineering problem, one 7.3 m reflector antenna operated in Ka band is considered as a research object, and the simulation temperature and the measuring temperature are estimated both with good agreement with the estimated temperatures. The analysis results show that the proposed method is simple, fast and effective, and can be used for the real-time compensation for the thermal distortion. There is also reference value for the antenna structure design.