机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2015年
6期
198-207
,共10页
姚成玉%王斌%陈东宁%张瑞星
姚成玉%王斌%陳東寧%張瑞星
요성옥%왕빈%진동저%장서성
微粒群算法%引斥力%LAPSO算法%混合粒子交互%HIPSO算法
微粒群算法%引斥力%LAPSO算法%混閤粒子交互%HIPSO算法
미립군산법%인척력%LAPSO산법%혼합입자교호%HIPSO산법
particle swarm optimization algorithm%attraction and repulsion%LAPSO algorithm%hybrid-particle interaction%HIPSO algorithm
针对现有微粒群算法仅考虑单一一种引斥力规则使得其搜索能力存在的不足,考虑在不同搜索阶段采用不同的引斥力规则,提出搜索后期引力增强型混合引斥力微粒群算法(LAPSO算法)。利用拟态物理学中的引斥力规则使粒子保持多样性,提高算法的全局搜索能力;当进入到具有全局最优解的区域时,增强引力作用、减少斥力作用,利用比自身适应度好的粒子和全局最优解粒子的引力作用,提高算法的局部搜索能力。为进一步提高 LAPSO 算法的优化性能,将其与混合全连接型-环形拓扑结合,提出混合粒子交互微粒群算法(HIPSO算法)。通过6个Benchmark函数进行测试,结果表明,与现有的扩展-微粒群、微-微粒群、中值导向-微粒群等算法相比,所提的LAPSO算法、HIPSO算法具有较好的种群多样性,具有更好的寻优精度、收敛率和最优解搜索能力。结合文献[7]中的柔性流水车间调度离散优化实例和文献[20]中的超声振动加工工艺参数连续优化实例,验证了HIPSO算法的最优解搜索能力。
針對現有微粒群算法僅攷慮單一一種引斥力規則使得其搜索能力存在的不足,攷慮在不同搜索階段採用不同的引斥力規則,提齣搜索後期引力增彊型混閤引斥力微粒群算法(LAPSO算法)。利用擬態物理學中的引斥力規則使粒子保持多樣性,提高算法的全跼搜索能力;噹進入到具有全跼最優解的區域時,增彊引力作用、減少斥力作用,利用比自身適應度好的粒子和全跼最優解粒子的引力作用,提高算法的跼部搜索能力。為進一步提高 LAPSO 算法的優化性能,將其與混閤全連接型-環形拓撲結閤,提齣混閤粒子交互微粒群算法(HIPSO算法)。通過6箇Benchmark函數進行測試,結果錶明,與現有的擴展-微粒群、微-微粒群、中值導嚮-微粒群等算法相比,所提的LAPSO算法、HIPSO算法具有較好的種群多樣性,具有更好的尋優精度、收斂率和最優解搜索能力。結閤文獻[7]中的柔性流水車間調度離散優化實例和文獻[20]中的超聲振動加工工藝參數連續優化實例,驗證瞭HIPSO算法的最優解搜索能力。
침대현유미립군산법부고필단일일충인척력규칙사득기수색능력존재적불족,고필재불동수색계단채용불동적인척력규칙,제출수색후기인력증강형혼합인척력미립군산법(LAPSO산법)。이용의태물이학중적인척력규칙사입자보지다양성,제고산법적전국수색능력;당진입도구유전국최우해적구역시,증강인력작용、감소척력작용,이용비자신괄응도호적입자화전국최우해입자적인력작용,제고산법적국부수색능력。위진일보제고 LAPSO 산법적우화성능,장기여혼합전련접형-배형탁복결합,제출혼합입자교호미립군산법(HIPSO산법)。통과6개Benchmark함수진행측시,결과표명,여현유적확전-미립군、미-미립군、중치도향-미립군등산법상비,소제적LAPSO산법、HIPSO산법구유교호적충군다양성,구유경호적심우정도、수렴솔화최우해수색능력。결합문헌[7]중적유성류수차간조도리산우화실례화문헌[20]중적초성진동가공공예삼수련속우화실례,험증료HIPSO산법적최우해수색능력。
To overcome the searching shortages of the existing particle swarm optimization algorithms only considered a single kind of attraction and repulsion rules, different attraction and repulsion rules should be considered in different searching stages, later-stage attraction-enhanced hybrid attraction and repulsion particle swarm optimization algorithm(LAPSO algorithm) is proposed: At the early stage, the diversity of particles are maintained by the rules of attraction and repulsion in artificial physics, to improve the global searching ability; When the particles move to the global optimal solution area, enhanced the effect of attraction and reduced the effect of repulsion, using the attractions of other particles with better fitness values and the global optimal solution particle to improve the local searching ability. In order to further improve the optimal performance of LAPSO algorithm, hybrid-particle interaction particle swarm optimization algorithm (HIPSO algorithm) is proposed by combining LAPSO algorithm and hybrid fully connected-ring topology. The test results of six Benchmark functions show that the proposed LAPSO algorithm and HIPSO algorithm have better population diversity, better optimization precision, convergence rate and optimal solution searching ability than the existing extended-particle swarm optimization algorithm, micro-particle swarm optimization algorithm and median-oriented particle swarm optimization algorithm. The optimal solution searching ability of HIPSO algorithm is verified by the discrete optimization example of flexible flow-shop scheduling in the reference [7] and continuous optimization example of ultrasonic vibration process parameters in the reference [20].