机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2015年
7期
107-114
,共8页
模糊数据融合%故障诊断%滚动轴承
模糊數據融閤%故障診斷%滾動軸承
모호수거융합%고장진단%곤동축승
fuzzy data fusion%fault diagnosis%rolling element bearing
轴承运行时会产生较大的振动噪声,采用振动信号统计量指标可以识别其共振频带,并通过共振频带解调来提取故障特征信号。目前常用的峭度图等方法根据经验自顶向下粗略划分轴承振动频谱,而且采用单一指标识别共振频带,常常被噪声所干扰,因而鲁棒性不高。为了提高滚动轴承故障诊断的精度,提出一种多指标模糊融合的最优频带解调方法。采用自底向上的思路,以最小化代价函数为条件,通过细分振动频谱,将细分的频谱进行双向合并,可以提高频带划分的精度。在提出的方法中,代价函数由峭度、平滑因子、峰度系数等多个指标应用模糊贴近度方法进行数据融合构造,可以有效提高识别最优共振频带的鲁棒性。分别采用仿真信号和实际采集信号对所提出的方法进行测试,与现有的单指标方法相比,试验结果表明所提出的方法可以正确诊断滚动轴承的故障。
軸承運行時會產生較大的振動譟聲,採用振動信號統計量指標可以識彆其共振頻帶,併通過共振頻帶解調來提取故障特徵信號。目前常用的峭度圖等方法根據經驗自頂嚮下粗略劃分軸承振動頻譜,而且採用單一指標識彆共振頻帶,常常被譟聲所榦擾,因而魯棒性不高。為瞭提高滾動軸承故障診斷的精度,提齣一種多指標模糊融閤的最優頻帶解調方法。採用自底嚮上的思路,以最小化代價函數為條件,通過細分振動頻譜,將細分的頻譜進行雙嚮閤併,可以提高頻帶劃分的精度。在提齣的方法中,代價函數由峭度、平滑因子、峰度繫數等多箇指標應用模糊貼近度方法進行數據融閤構造,可以有效提高識彆最優共振頻帶的魯棒性。分彆採用倣真信號和實際採集信號對所提齣的方法進行測試,與現有的單指標方法相比,試驗結果錶明所提齣的方法可以正確診斷滾動軸承的故障。
축승운행시회산생교대적진동조성,채용진동신호통계량지표가이식별기공진빈대,병통과공진빈대해조래제취고장특정신호。목전상용적초도도등방법근거경험자정향하조략화분축승진동빈보,이차채용단일지표식별공진빈대,상상피조성소간우,인이로봉성불고。위료제고곤동축승고장진단적정도,제출일충다지표모호융합적최우빈대해조방법。채용자저향상적사로,이최소화대개함수위조건,통과세분진동빈보,장세분적빈보진행쌍향합병,가이제고빈대화분적정도。재제출적방법중,대개함수유초도、평활인자、봉도계수등다개지표응용모호첩근도방법진행수거융합구조,가이유효제고식별최우공진빈대적로봉성。분별채용방진신호화실제채집신호대소제출적방법진행측시,여현유적단지표방법상비,시험결과표명소제출적방법가이정학진단곤동축승적고장。
Due to the existence of noises, a statistical criterion of the vibration signal can be used to guide the identification of the resonance frequency band, which is then demodulated for extracting the faulty signature of the bearing. The commonly used resonance demodulation methods, such as the Kurtogram, coarsely portion the vibration band by empirically are used a top-down strategy. Employing only one criterion for the resonance band identification, moreover, is often interfered by the noises and hence being lack of robustness. To improve the accuracy of the bearing fault diagnosis, a fuzzy fusion technique using multiple criteria is proposed for the optimal band demodulation. In the present method, a fine approximation is first generated for the vibration spectrum. The fine spectrum is then merged bidirectionally using a bottom-up strategy. In this way, the frequency band can be segmented precisely to achieve the minimum cost function. In the present method, the cost function is constructed by a fuzzy neartude-based data fusion of kurtosis, smoothness index and crest factor, and therefore leading to the robust resonance band. Both simulated and actual signals are collected for testing the proposed technique. The results show that, comparing to the existing mono-criterion methods, the proposed technique is capable of correctly diagnosing the condition of the rolling element bearings.