电光与控制
電光與控製
전광여공제
ELECTRONICS OPTICS & CONTROL
2015年
4期
100-104
,共5页
线阵CCD%激光扫描%步进电机%二维轮廓测量
線陣CCD%激光掃描%步進電機%二維輪廓測量
선진CCD%격광소묘%보진전궤%이유륜곽측량
linear CCD%laser scanning%stepper motor%2D outline measurement
吊装过程中为获取吊物具体位置信息,设计了一种基于线阵CCD的二维轮廓扫描系统。利用激光照射直线与线阵CCD投影直线相交的原理求取激光照射点二维坐标;提出了一种基于硬件的线阵CCD脉冲中心位置测量方法;采用双直线法对线阵CCD进行标定,得到其输出像素坐标与投影直线的映射关系;研究提出了一种升降速控制策略,能平稳高效地控制步进电机。用已知尺寸的圆柱形PVC管作为实验对象,系统测得其二维轮廓若干离散点坐标,通过圆周拟合的方式得到圆柱半径,平均误差为0.928 mm,系统一次扫描耗时约0.45 s;实验结果表明,系统测量精度较高,扫描速度较快,可广泛应用于物体的二维轮廓扫描。
弔裝過程中為穫取弔物具體位置信息,設計瞭一種基于線陣CCD的二維輪廓掃描繫統。利用激光照射直線與線陣CCD投影直線相交的原理求取激光照射點二維坐標;提齣瞭一種基于硬件的線陣CCD脈遲中心位置測量方法;採用雙直線法對線陣CCD進行標定,得到其輸齣像素坐標與投影直線的映射關繫;研究提齣瞭一種升降速控製策略,能平穩高效地控製步進電機。用已知呎吋的圓柱形PVC管作為實驗對象,繫統測得其二維輪廓若榦離散點坐標,通過圓週擬閤的方式得到圓柱半徑,平均誤差為0.928 mm,繫統一次掃描耗時約0.45 s;實驗結果錶明,繫統測量精度較高,掃描速度較快,可廣汎應用于物體的二維輪廓掃描。
조장과정중위획취조물구체위치신식,설계료일충기우선진CCD적이유륜곽소묘계통。이용격광조사직선여선진CCD투영직선상교적원리구취격광조사점이유좌표;제출료일충기우경건적선진CCD맥충중심위치측량방법;채용쌍직선법대선진CCD진행표정,득도기수출상소좌표여투영직선적영사관계;연구제출료일충승강속공제책략,능평은고효지공제보진전궤。용이지척촌적원주형PVC관작위실험대상,계통측득기이유륜곽약간리산점좌표,통과원주의합적방식득도원주반경,평균오차위0.928 mm,계통일차소묘모시약0.45 s;실험결과표명,계통측량정도교고,소묘속도교쾌,가엄범응용우물체적이유륜곽소묘。
In order to obtain the specific location information of hanging objects in the lifting process,a 2D outline scanning system based on linear CCD was designed .The principle that laser line and linear CCD projection line must intersect was used for getting the 2 D coordinates of laser irradiation .A linear CCD pulse central position measurement method based on hardware was proposed,and double line method was used for linear CCD calibration to obtain the mapping relationship between the output pixel coordinates and projection line.A speed control strategy was presented for smooth and efficient control of stepper motor .A cylindrical PVC with known size was taken as the experiment object,and was measured by the system for coordinates of some discrete points of the 2D contour.The cylinder radius was obtained by fitting circle with an average error of 0.928 mm,and one scan took about 0.45 s.The results show that the system has a high measuring accuracy,fast scanning speed,and can be widely applied to 2D contour scanning of objects .