渔业现代化
漁業現代化
어업현대화
FISHERY MODERNIZATION
2015年
2期
33-37
,共5页
工业化循环水养殖%计算机视觉%决策树%支持向量机%残饵识别
工業化循環水養殖%計算機視覺%決策樹%支持嚮量機%殘餌識彆
공업화순배수양식%계산궤시각%결책수%지지향량궤%잔이식별
industrial recirculating aquaculture%computer vision%decision tree%support vector machine%recognition of residual feeds
利用计算机视觉技术和机器学习方法研究工业化循环水养殖的残饵与粪便的识别问题,为基于残饵浓度检测的智能投喂系统提供理论依据。首先对残饵视频进行图像预处理,分割出残饵和粪便图像;然后根据残饵和粪便在灰度分布和形状上的差异,提取平均灰度,周长平方面积比、凸壳面积比、骨架数、对比度、逆差距6个特征;再分别运用4种不同核函数的支持向量机( SVM)算法和改进的决策树算法进行残饵图像识别。结果显示,径向基核函数的SVM算法识别效果最好,残饵和粪便识别率分别达到99%和97%以上;改进离散方式的决策树算法识别率与SVM算法的识别率接近,并且实时性更好。
利用計算機視覺技術和機器學習方法研究工業化循環水養殖的殘餌與糞便的識彆問題,為基于殘餌濃度檢測的智能投餵繫統提供理論依據。首先對殘餌視頻進行圖像預處理,分割齣殘餌和糞便圖像;然後根據殘餌和糞便在灰度分佈和形狀上的差異,提取平均灰度,週長平方麵積比、凸殼麵積比、骨架數、對比度、逆差距6箇特徵;再分彆運用4種不同覈函數的支持嚮量機( SVM)算法和改進的決策樹算法進行殘餌圖像識彆。結果顯示,徑嚮基覈函數的SVM算法識彆效果最好,殘餌和糞便識彆率分彆達到99%和97%以上;改進離散方式的決策樹算法識彆率與SVM算法的識彆率接近,併且實時性更好。
이용계산궤시각기술화궤기학습방법연구공업화순배수양식적잔이여분편적식별문제,위기우잔이농도검측적지능투위계통제공이론의거。수선대잔이시빈진행도상예처리,분할출잔이화분편도상;연후근거잔이화분편재회도분포화형상상적차이,제취평균회도,주장평방면적비、철각면적비、골가수、대비도、역차거6개특정;재분별운용4충불동핵함수적지지향량궤( SVM)산법화개진적결책수산법진행잔이도상식별。결과현시,경향기핵함수적SVM산법식별효과최호,잔이화분편식별솔분별체도99%화97%이상;개진리산방식적결책수산법식별솔여SVM산법적식별솔접근,병차실시성경호。
The paper mainly researches the residual feeds and feces recognition of recirculating aquaculture systems by using the computer vision technology and the machine learning methods, which provides a theory basis for intelligent feeding system based on residual feeds concentration detection. At first, the residual feeds and impurity images were obtained by preprocessing the residual feeds video record. Then, the features were extracted by analyzing the difference between residual feeds and feces in gray level distribution and shape. The features include:AverPixel, Peri2Area, Conv2Area, Skeletons, Contrast and IDM. Finally, we realized the recognition of residual feeds image by using the support vector machine algorithm based on 4 different kinds of kernel function and the modified decision tree algorithm. Experimental results showed the SVM based on the radial basis kernel obtained the best recognition rate. And the recognition rate of residual feeds and feces were up to 99% and 97% respectively. The recognition rate of decision tree with modified discrete way is close to the SVM’ s, and the real-time performance is better.