智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2015年
2期
193-200
,共8页
张媛媛%霍静%杨婉琪%高阳%史颖欢
張媛媛%霍靜%楊婉琪%高暘%史穎歡
장원원%곽정%양완기%고양%사영환
人脸核实%多模态%深度学习%深度信念网络
人臉覈實%多模態%深度學習%深度信唸網絡
인검핵실%다모태%심도학습%심도신념망락
face recognition%multimodes%deep learning%deep belief network
二代身份证人脸核实问题是指判断二代身份证人像和身份证使用者当前头像是否为同一人。具体来说,即将二代身份证模糊人像和实际在光照、背景等因素不可控环境下拍摄的若干张二代证使用者的视频人像作匹配,判断是否为同一个人。由于低分辨率模糊图像和清晰视频图像属于2种不同的图像模态,因此该问题属于异构人脸识别问题。考虑到跨模态人脸图像的差异,传统的特征抽取方法很难抽取判别性特征来描述不同模态图像,使得传统方法难以达到精准辨别。针对这个问题,提出了一种新的基于深度学习的解决方法,其基本思想是通过深度信念网络( DBN)的非监督贪心逐层训练来提取人脸图像的高层特征,结合传统的图像预处理和相似性度量技术,达到人脸核实的目的。通过在256人的真实二代证数据集上和传统特征降维方法PCA、LDA进行比较,证实了所提出方法在准确率上相比PCA有约12%的提升,相比LDA有约8%的提升。实验同时表明,针对数据量增大的情况,基于深度学习的解决方法要优于传统的人脸识别方法。
二代身份證人臉覈實問題是指判斷二代身份證人像和身份證使用者噹前頭像是否為同一人。具體來說,即將二代身份證模糊人像和實際在光照、揹景等因素不可控環境下拍攝的若榦張二代證使用者的視頻人像作匹配,判斷是否為同一箇人。由于低分辨率模糊圖像和清晰視頻圖像屬于2種不同的圖像模態,因此該問題屬于異構人臉識彆問題。攷慮到跨模態人臉圖像的差異,傳統的特徵抽取方法很難抽取判彆性特徵來描述不同模態圖像,使得傳統方法難以達到精準辨彆。針對這箇問題,提齣瞭一種新的基于深度學習的解決方法,其基本思想是通過深度信唸網絡( DBN)的非鑑督貪心逐層訓練來提取人臉圖像的高層特徵,結閤傳統的圖像預處理和相似性度量技術,達到人臉覈實的目的。通過在256人的真實二代證數據集上和傳統特徵降維方法PCA、LDA進行比較,證實瞭所提齣方法在準確率上相比PCA有約12%的提升,相比LDA有約8%的提升。實驗同時錶明,針對數據量增大的情況,基于深度學習的解決方法要優于傳統的人臉識彆方法。
이대신빈증인검핵실문제시지판단이대신빈증인상화신빈증사용자당전두상시부위동일인。구체래설,즉장이대신빈증모호인상화실제재광조、배경등인소불가공배경하박섭적약간장이대증사용자적시빈인상작필배,판단시부위동일개인。유우저분변솔모호도상화청석시빈도상속우2충불동적도상모태,인차해문제속우이구인검식별문제。고필도과모태인검도상적차이,전통적특정추취방법흔난추취판별성특정래묘술불동모태도상,사득전통방법난이체도정준변별。침대저개문제,제출료일충신적기우심도학습적해결방법,기기본사상시통과심도신념망락( DBN)적비감독탐심축층훈련래제취인검도상적고층특정,결합전통적도상예처리화상사성도량기술,체도인검핵실적목적。통과재256인적진실이대증수거집상화전통특정강유방법PCA、LDA진행비교,증실료소제출방법재준학솔상상비PCA유약12%적제승,상비LDA유약8%적제승。실험동시표명,침대수거량증대적정황,기우심도학습적해결방법요우우전통적인검식별방법。
The objective of the face verification method for the second?generation identity card is to determine whether the original head?photo stored in the corresponding identity card image and the currently captured head photo of the card?holder by using a video camera image actually belongs to the same person or not. To obtain a good verification result for the heterogeneous face verification method is a very challenging task because the two different types of ima?ges belong to two different modalities (e.g., different image resolutions, different illumination conditions). Consider?ing the difference of trans?modal face images, it is hard to use traditional feature extraction methods to extract dis?criminative feature for description of images with different modes. Traditional feature extraction methods cannot distin?guish images exactly. In this paper, a deep learning?based face verification method is proposed. The proposed deep learning?based face verification method integrates the deep belief network ( DBN ) , which employs unsupervised greedy layer?by?layer training for high?level feature extraction of face photo and combines the popularly used image preprocessing and similarity measurement technologies to realize the purpose of face verification. The results were e?valuated on a real dataset with two different modalities of 256 different people. This method outperforms the traditional principal component analysis ( PCA) and linear discriminant analysis ( LDA) methods with 12% and 8% improve?ments in terms of the verification accuracy, respectively. The results validated the advantage of the proposed method, especially when the amount of entries increases.