水资源与水工程学报
水資源與水工程學報
수자원여수공정학보
JOURNAL OF WATER RESOURCES AND WATER ENGINEERING
2015年
2期
26-31,39
,共7页
于海姣%温小虎%冯起%何志斌
于海姣%溫小虎%馮起%何誌斌
우해교%온소호%풍기%하지빈
小流域%日降水-径流模拟%日径流量%支持向量机%祁连山
小流域%日降水-徑流模擬%日徑流量%支持嚮量機%祁連山
소류역%일강수-경류모의%일경류량%지지향량궤%기련산
small catchment%daily rainfall-runoff simulation%daily runoff%support vector machine%Qil-ian mountains
及时准确的日径流预测在流域水资源的合理规划、利用及管理中具有十分重要的作用。本文以支持向量机( SVM)模型为基础,以祁连山典型小流域-排露沟流域为研究区域,建立了流域日降水-径流模型,对流域未来1~7 d的日径流量进行了模拟预测。为检验SVM模型的有效性,模拟结果与人工神经网络( ANN)模型预测结果进行了对比。结果表明:SVM和ANN均表现出了很高的精度;但相比于传统的ANN模型,SVM模型的预测精度显著提高。表明SVM模型在半干旱山区小流域径流预测中有更好的适用性,可以用于流域中长期日径流预测,是资料有限的条件下中长期日径流预测的有效工具。
及時準確的日徑流預測在流域水資源的閤理規劃、利用及管理中具有十分重要的作用。本文以支持嚮量機( SVM)模型為基礎,以祁連山典型小流域-排露溝流域為研究區域,建立瞭流域日降水-徑流模型,對流域未來1~7 d的日徑流量進行瞭模擬預測。為檢驗SVM模型的有效性,模擬結果與人工神經網絡( ANN)模型預測結果進行瞭對比。結果錶明:SVM和ANN均錶現齣瞭很高的精度;但相比于傳統的ANN模型,SVM模型的預測精度顯著提高。錶明SVM模型在半榦旱山區小流域徑流預測中有更好的適用性,可以用于流域中長期日徑流預測,是資料有限的條件下中長期日徑流預測的有效工具。
급시준학적일경류예측재류역수자원적합리규화、이용급관리중구유십분중요적작용。본문이지지향량궤( SVM)모형위기출,이기련산전형소류역-배로구류역위연구구역,건립료류역일강수-경류모형,대류역미래1~7 d적일경류량진행료모의예측。위검험SVM모형적유효성,모의결과여인공신경망락( ANN)모형예측결과진행료대비。결과표명:SVM화ANN균표현출료흔고적정도;단상비우전통적ANN모형,SVM모형적예측정도현저제고。표명SVM모형재반간한산구소류역경류예측중유경호적괄용성,가이용우류역중장기일경류예측,시자료유한적조건하중장기일경류예측적유효공구。
To predict daily runoff timely and accurately plays an important role in the reasonable plan -ning,utilization and management of water resources .This paper built daily rainfallr-unoff model to predict daily runoff for seven days in Pailugou catchment in a typical catchment of Qilian mountains based on support vector machine(SVM).In order to test the validity of the developed model ,it compared the re-sults between SVM model and traditional artificial neural network ( ANN)model in terms of different eval-uation criteria during validation period .Results showed that both SVM and ANN presents very high preci-sion and SVM model performed better than ANN model .The SVM model may be considered as an effec-tive tool to establish a medium and long-term daily runoff forecast model in semiarid mountain regions un-der limited data condition .