电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2015年
4期
777-783
,共7页
曹明明%干宗良%崔子冠%李然%朱秀昌
曹明明%榦宗良%崔子冠%李然%硃秀昌
조명명%간종량%최자관%리연%주수창
图像处理%人脸超分辨率重建%邻域嵌入%局部视觉基元%2维主成分分析
圖像處理%人臉超分辨率重建%鄰域嵌入%跼部視覺基元%2維主成分分析
도상처리%인검초분변솔중건%린역감입%국부시각기원%2유주성분분석
Image processing%Face hallucination%Neighbor embedding%Local visual primitives%Two-Dimensional Principal Component Analysis (2D-PCA)
在基于邻域嵌入人脸图像的超分辨率重建算法中,训练和重建均在特征空间进行,因此,特征选择对算法性能具有较大影响。另外,算法模型对重建权重未加限定,导致负数权重出现而产生过拟合效应,使得重建人脸图像质量衰退。考虑到人脸图像的特征选择以及权重符号限定的重要作用,该文提出一种基于2维主成分分析(2D- PCA)特征描述的非负权重邻域嵌入人脸超分辨率重建算法。首先将人脸图像分成若干子块,利用K均值聚类获得图像子块的局部视觉基元,并利用得到的局部视觉基元对图像子块分类。然后,利用2D-PCA 对每一类人脸图像子块提取特征,并建立高、低分辨率样本库。最后,在重建过程中使用新的非负权重求解方法求取权重。仿真实验结果表明,相比其他基于邻域嵌入人脸超分辨率重建方法,所提算法可有效提高权重的稳定性,减少过拟合效应,其重建人脸图像具有较好的主客观质量。
在基于鄰域嵌入人臉圖像的超分辨率重建算法中,訓練和重建均在特徵空間進行,因此,特徵選擇對算法性能具有較大影響。另外,算法模型對重建權重未加限定,導緻負數權重齣現而產生過擬閤效應,使得重建人臉圖像質量衰退。攷慮到人臉圖像的特徵選擇以及權重符號限定的重要作用,該文提齣一種基于2維主成分分析(2D- PCA)特徵描述的非負權重鄰域嵌入人臉超分辨率重建算法。首先將人臉圖像分成若榦子塊,利用K均值聚類穫得圖像子塊的跼部視覺基元,併利用得到的跼部視覺基元對圖像子塊分類。然後,利用2D-PCA 對每一類人臉圖像子塊提取特徵,併建立高、低分辨率樣本庫。最後,在重建過程中使用新的非負權重求解方法求取權重。倣真實驗結果錶明,相比其他基于鄰域嵌入人臉超分辨率重建方法,所提算法可有效提高權重的穩定性,減少過擬閤效應,其重建人臉圖像具有較好的主客觀質量。
재기우린역감입인검도상적초분변솔중건산법중,훈련화중건균재특정공간진행,인차,특정선택대산법성능구유교대영향。령외,산법모형대중건권중미가한정,도치부수권중출현이산생과의합효응,사득중건인검도상질량쇠퇴。고필도인검도상적특정선택이급권중부호한정적중요작용,해문제출일충기우2유주성분분석(2D- PCA)특정묘술적비부권중린역감입인검초분변솔중건산법。수선장인검도상분성약간자괴,이용K균치취류획득도상자괴적국부시각기원,병이용득도적국부시각기원대도상자괴분류。연후,이용2D-PCA 대매일류인검도상자괴제취특정,병건립고、저분변솔양본고。최후,재중건과정중사용신적비부권중구해방법구취권중。방진실험결과표명,상비기타기우린역감입인검초분변솔중건방법,소제산법가유효제고권중적은정성,감소과의합효응,기중건인검도상구유교호적주객관질량。
In neighbor embedding based face hallucination, the training and reconstruction processes are performed in the feature space, thus the feature selection is important. In addition, there is no constraint specified for the signs of the weights generated in neighbor embedding algorithm, which leads to over-fitting and degradation of the recovered face images. Considering the importance of feature selection and the constraints of weights, a novel neighbor embedding face hallucination method is proposed based on non-negative weights and Two-Dimensional Principal Component Analysis (2D-PCA) features. First, the face images are partitioned into patches, and the local visual primitives are obtained by k-means clustering algorithm. The face image patches are classified with the local visual primitives generated before. Second, the feature of face image patches is captured with 2D-PCA, and the low and high dictionary is established. Finally, a novel non-negative weights solution method is used to obtain the weights. The experiment results show that the weights computed by the proposed method have more stable behavior and obviously less over-fitting phenomenon, furthermore, the recovery face images have better subjective and objective quality.