电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2015年
4期
961-968
,共8页
目标识别%空间锥体目标%窄带微多普勒调制%瞬时频率估计%参数估计
目標識彆%空間錐體目標%窄帶微多普勒調製%瞬時頻率估計%參數估計
목표식별%공간추체목표%착대미다보륵조제%순시빈솔고계%삼수고계
Target recognition%Space cone-shaped target%Narrowband micro-Doppler modulation%Instantaneous Frequency (IF) estimation%Parameter estimation
当雷达对锥体目标发射窄带信号时,进动调制会使回波中包含的散射中心瞬时频率发生周期性变化,这种变化可以反映出目标几何尺寸与结构特性,针对此该文提出一种基于窄带微多普勒调制的空间锥体目标参数估计方法。首先对目标散射特性进行分析,推导进动引起的目标散射中心瞬时频率变化公式;然后利用时变自回归模型估计散射中心瞬时频率,并对估计结果进行重新关联以消除其中出现的关联错误;最后根据锥顶和锥底散射中心瞬时频率变化性质,结合目标弹道估计得到目标几何尺寸参数及微动参数。基于电磁计算数据的实验结果验证了该文所提方法的有效性和精确性。
噹雷達對錐體目標髮射窄帶信號時,進動調製會使迴波中包含的散射中心瞬時頻率髮生週期性變化,這種變化可以反映齣目標幾何呎吋與結構特性,針對此該文提齣一種基于窄帶微多普勒調製的空間錐體目標參數估計方法。首先對目標散射特性進行分析,推導進動引起的目標散射中心瞬時頻率變化公式;然後利用時變自迴歸模型估計散射中心瞬時頻率,併對估計結果進行重新關聯以消除其中齣現的關聯錯誤;最後根據錐頂和錐底散射中心瞬時頻率變化性質,結閤目標彈道估計得到目標幾何呎吋參數及微動參數。基于電磁計算數據的實驗結果驗證瞭該文所提方法的有效性和精確性。
당뢰체대추체목표발사착대신호시,진동조제회사회파중포함적산사중심순시빈솔발생주기성변화,저충변화가이반영출목표궤하척촌여결구특성,침대차해문제출일충기우착대미다보륵조제적공간추체목표삼수고계방법。수선대목표산사특성진행분석,추도진동인기적목표산사중심순시빈솔변화공식;연후이용시변자회귀모형고계산사중심순시빈솔,병대고계결과진행중신관련이소제기중출현적관련착오;최후근거추정화추저산사중심순시빈솔변화성질,결합목표탄도고계득도목표궤하척촌삼수급미동삼수。기우전자계산수거적실험결과험증료해문소제방법적유효성화정학성。
When radar transmits the narrowband signal to the cone-shaped target, the modulation induced by precession causes the periodic change of scattering centers’ Instantaneous Frequency (IF) contained in echo, which can reflect the target’s geometry and structure characteristics. Aiming at this, a parameter estimation method for space cone-shaped target is proposed based on narrowband micro-Doppler modulation. First, the scattering properties of the cone-shaped target are analyzed, and the scattering centers’ IF variation formulas caused by precession are derived. Then, the Time-Varying AutoRegressive (TVAR) model is utilized to estimate the IF variations from the narrowband echoes of the cone-shaped target, and reassociation is implemented to fix the estimation errors. Finally, based on the properties of the IF variations of the top and bottom scattering centers and the trajectory, the target geometry and micro-motion parameters are estimated. Experiments based on the electromagnetic computation data verify the validness and accuracy of the proposed method.