电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2015年
4期
763-769
,共7页
压缩感知%Berlekamp-Justesen码%渐近最优%复测量矩阵%限定等距性
壓縮感知%Berlekamp-Justesen碼%漸近最優%複測量矩陣%限定等距性
압축감지%Berlekamp-Justesen마%점근최우%복측량구진%한정등거성
Compressive Sensing (CS)%Berlekamp-Justesen (B-J) codes%Near-optimal%Complex matrix%Restricted Isometry Property (RIP)
确定性测量矩阵构造是近期压缩感知领域的一个重要研究问题。该文基于 Berlekamp-Justesen(B-J)码,构造了两类确定性测量矩阵。首先,给出一类相关性渐近最优的稀疏测量矩阵,从而保证其具有较好的限定等距性(RIP)。接着,构造一类确定性复测量矩阵,这类矩阵可以通过删除部分行列使其大小灵活变化。第1类矩阵具有很高的稀疏性,第2类则是基于循环矩阵,因此它们的存储开销较小,编码和重构复杂度也相对较低。仿真结果表明,这两类矩阵常常有优于或相当于现有的随机和确定性测量矩阵的重建性能。
確定性測量矩陣構造是近期壓縮感知領域的一箇重要研究問題。該文基于 Berlekamp-Justesen(B-J)碼,構造瞭兩類確定性測量矩陣。首先,給齣一類相關性漸近最優的稀疏測量矩陣,從而保證其具有較好的限定等距性(RIP)。接著,構造一類確定性複測量矩陣,這類矩陣可以通過刪除部分行列使其大小靈活變化。第1類矩陣具有很高的稀疏性,第2類則是基于循環矩陣,因此它們的存儲開銷較小,編碼和重構複雜度也相對較低。倣真結果錶明,這兩類矩陣常常有優于或相噹于現有的隨機和確定性測量矩陣的重建性能。
학정성측량구진구조시근기압축감지영역적일개중요연구문제。해문기우 Berlekamp-Justesen(B-J)마,구조료량류학정성측량구진。수선,급출일류상관성점근최우적희소측량구진,종이보증기구유교호적한정등거성(RIP)。접착,구조일류학정성복측량구진,저류구진가이통과산제부분행렬사기대소령활변화。제1류구진구유흔고적희소성,제2류칙시기우순배구진,인차타문적존저개소교소,편마화중구복잡도야상대교저。방진결과표명,저량류구진상상유우우혹상당우현유적수궤화학정성측량구진적중건성능。
Nowadays the deterministic construction of sensing matrices is a hot topic in compressed sensing. Two classes of deterministic sensing matrices based on the Berlekamp-Justesen (B-J) codes are proposed. Firstly, a class of sparse sensing matrices with near-optimal coherence is constructed. It satisfies the Restricted IsometryProperty (RIP) well. Afterwards, a class of deterministic complex-valued matrices is proposed. The row and column numbers of these matrices are tunable through the row and column puncturing. Moreover, the first proposed matrices are high sparsity and the second matrices are able to obtain from the cyclic matrices, thus the storage costs of them are relatively low and both the sampling and recovery processes can be simpler. The simulation results demonstrate that the proposed matrices often perform comparably to, or even better than some random matrices and deterministic measurement matrices.