科技管理研究
科技管理研究
과기관리연구
SCIENCE AND TECHNOLOGY MANAGEMENT RESEARCH
2015年
7期
174-179
,共6页
精益建设技术特征%项目绩效%遗传神经网络(GA-BP)%支持向量机(SVM)%变量筛选
精益建設技術特徵%項目績效%遺傳神經網絡(GA-BP)%支持嚮量機(SVM)%變量篩選
정익건설기술특정%항목적효%유전신경망락(GA-BP)%지지향량궤(SVM)%변량사선
lean construction technical features%project performance%genetic neural network (GA -BP)%support vector machine (SVM)%variable selection
为探究精益建设技术与项目绩效之间的内在作用机理,构建基于 BP 和 SVM变量筛选的6S、可视化管理、最后计划者等7种精益建设技术与知识能力、财务、业主等5个项目绩效分项指标和综合指标的耦合模型。仿真结果表明:在精益建设技术特征与项目绩效分项指标的耦合模型仿真分析中,基于 GA -BP 的预测模型比标准 BP 神经网络模型精度要高;在精益建设技术特征与项目绩效综合指标的耦合模型仿真分析中,基于 SVM的预测模型比 GA -BP 的预测模型精度要高。另外,利用 BP 和 SVM结合 MIV 算法进一步探究不同精益建设技术对项目绩效各指标和综合指标的影响程度。研究结果为项目利益相关者提高项目管理绩效提供决策支持。
為探究精益建設技術與項目績效之間的內在作用機理,構建基于 BP 和 SVM變量篩選的6S、可視化管理、最後計劃者等7種精益建設技術與知識能力、財務、業主等5箇項目績效分項指標和綜閤指標的耦閤模型。倣真結果錶明:在精益建設技術特徵與項目績效分項指標的耦閤模型倣真分析中,基于 GA -BP 的預測模型比標準 BP 神經網絡模型精度要高;在精益建設技術特徵與項目績效綜閤指標的耦閤模型倣真分析中,基于 SVM的預測模型比 GA -BP 的預測模型精度要高。另外,利用 BP 和 SVM結閤 MIV 算法進一步探究不同精益建設技術對項目績效各指標和綜閤指標的影響程度。研究結果為項目利益相關者提高項目管理績效提供決策支持。
위탐구정익건설기술여항목적효지간적내재작용궤리,구건기우 BP 화 SVM변량사선적6S、가시화관리、최후계화자등7충정익건설기술여지식능력、재무、업주등5개항목적효분항지표화종합지표적우합모형。방진결과표명:재정익건설기술특정여항목적효분항지표적우합모형방진분석중,기우 GA -BP 적예측모형비표준 BP 신경망락모형정도요고;재정익건설기술특정여항목적효종합지표적우합모형방진분석중,기우 SVM적예측모형비 GA -BP 적예측모형정도요고。령외,이용 BP 화 SVM결합 MIV 산법진일보탐구불동정익건설기술대항목적효각지표화종합지표적영향정도。연구결과위항목이익상관자제고항목관리적효제공결책지지。
In order to explore the internal mechanism between inquiry lean construction technology and project perform-ance,the paper constructs 7 kinds of lean construction technology such as the screening of BP and SVMvariables 6S,visu-al management,the last planner,and the coupling model consisting of comprehensive indexes and 5 project performance in-dexes such as knowledge ability,finance,owners.The simulation results show that:in the analysis of coupled model simu-lation technology characteristics of lean construction and project performance sub index,prediction model of GA -BP is higher than standard BP neural network model based on the analysis of precision;in the analysis of coupled model simula-tion comprehensive indicators of performance technology characteristics of lean construction and project,the predictive mod-el of SVMis higher than the precision of forecasting model GA -BP based on.In addition,using the BP and SVM com-bined with MIV algorithm,the paper further explores the influence of different lean construction techniques on each index and comprehensive index of project performance.Research results provide decision support for the project stakeholders to improve the performance of project management.