医学影像学杂志
醫學影像學雜誌
의학영상학잡지
JOURNAL OF MEDICAL IMAGING
2015年
4期
612-616
,共5页
宋歌声%刘文慧%李进叶%张成琪
宋歌聲%劉文慧%李進葉%張成琪
송가성%류문혜%리진협%장성기
甲状腺实性结节%超声检查%灰度共生矩阵%Logistic回归分析%鉴别诊断
甲狀腺實性結節%超聲檢查%灰度共生矩陣%Logistic迴歸分析%鑒彆診斷
갑상선실성결절%초성검사%회도공생구진%Logistic회귀분석%감별진단
Ultrasound%GLCM%Logistic regression%Solid thyroid nodules%Differential diagnosis
目的:利用灰度共生矩阵法提取B 超图像上甲状腺实性结节病灶区的纹理特征值,并建立Logistic预测模型,并探讨该模型在鉴别甲状腺实性结节良恶性中的可行性。方法收集经手术证实的甲状腺实性结节患者临床资料,从其超声图像中提取结节区域灰度共生矩阵纹理特征值,并将该特征值作为自变量,结节的良恶性作为因变量拟合Lo‐gistic预测模型。利用10折交叉验证对预测模型进行效果评价,并绘制ROC曲线。结果 Logistic回归模型对甲状腺实性结节良恶性预测的准确率为82%,ROC曲线下面积(AUC)为0.89。结论利用甲状腺实性结节病灶超声图像灰度共生纹理特征值建立的二分类Logistic回归模型能够对甲状腺实性结节的良恶性做出较准确的判断。
目的:利用灰度共生矩陣法提取B 超圖像上甲狀腺實性結節病竈區的紋理特徵值,併建立Logistic預測模型,併探討該模型在鑒彆甲狀腺實性結節良噁性中的可行性。方法收集經手術證實的甲狀腺實性結節患者臨床資料,從其超聲圖像中提取結節區域灰度共生矩陣紋理特徵值,併將該特徵值作為自變量,結節的良噁性作為因變量擬閤Lo‐gistic預測模型。利用10摺交扠驗證對預測模型進行效果評價,併繪製ROC麯線。結果 Logistic迴歸模型對甲狀腺實性結節良噁性預測的準確率為82%,ROC麯線下麵積(AUC)為0.89。結論利用甲狀腺實性結節病竈超聲圖像灰度共生紋理特徵值建立的二分類Logistic迴歸模型能夠對甲狀腺實性結節的良噁性做齣較準確的判斷。
목적:이용회도공생구진법제취B 초도상상갑상선실성결절병조구적문리특정치,병건립Logistic예측모형,병탐토해모형재감별갑상선실성결절량악성중적가행성。방법수집경수술증실적갑상선실성결절환자림상자료,종기초성도상중제취결절구역회도공생구진문리특정치,병장해특정치작위자변량,결절적량악성작위인변량의합Lo‐gistic예측모형。이용10절교차험증대예측모형진행효과평개,병회제ROC곡선。결과 Logistic회귀모형대갑상선실성결절량악성예측적준학솔위82%,ROC곡선하면적(AUC)위0.89。결론이용갑상선실성결절병조초성도상회도공생문리특정치건립적이분류Logistic회귀모형능구대갑상선실성결절적량악성주출교준학적판단。
Objective To evaluate the value of using texture‐based gray‐level co‐occurrence matrix (GLCM ) features ex‐tracted from thyroid ultrasound images to build logistic model for differentiating the nature of thyroid nodules .Methods We collected 94 cases patients who suffered from the thyroid nodules and accepted thyroidectomy .GLCM was used to ex‐tract texture features from their ultrasound images .Then ,we used the features as independent variables and the nature of nodules as dependent variables to build logistic model .10‐fold cross‐validation was used to evaluate the performance of the model and drew the ROC curve .Results The accuracy of the logistic regression was 82% ,and the area under the ROC curve(AUC)was 0 .89 .Conclusion The binary logistic regression built with GLCM features extracted from solid thyroid ultrasound images is useful in diagnosing the nature of thyroid solid nodules .