系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2015年
4期
901-906
,共6页
王磊%程向红%冉昌艳%陈红梅%胡杰
王磊%程嚮紅%冉昌豔%陳紅梅%鬍傑
왕뢰%정향홍%염창염%진홍매%호걸
自主水下航行器%组合导航%多模型估计%贝叶斯网络
自主水下航行器%組閤導航%多模型估計%貝葉斯網絡
자주수하항행기%조합도항%다모형고계%패협사망락
autonomous underwater vehicle (AUV)%integrated navigation%multiple model cstimation%Bayesian network
针对复杂环境下自主水下航行器(autonomous underwater vehicle,AUV)组合导航系统中存在噪声不确定或者易发生变化的情况,提出一种贝叶斯网络增强型交互式多模型(interactive multiple model filter based on Bayesian network,BN-IMM)滤波算法。该算法在多模型估计基础上,引入特征变量,并根据变量与系统模型之间存在的因果关系建立贝叶斯网络;利用贝叶斯网络参数修正多模型估计中的模型切换概率,能够降低多模型算法中真实模式识别对先验知识的依赖性。该算法能够解决交互式多模型(interactive multiple model,IMM)算法中模型转换存在滞后、模型概率易发生跳变等问题,增强多模型算法的自适应能力。以陀螺和加速度计的输出作为特征变量建立贝叶斯网络,对 AUV 组合导航系统进行仿真,结果表明所提出的 BN-IMM 算法相比于传统的IMM 算法能够显著提高机动状态时模型转换速度和估计精度。
針對複雜環境下自主水下航行器(autonomous underwater vehicle,AUV)組閤導航繫統中存在譟聲不確定或者易髮生變化的情況,提齣一種貝葉斯網絡增彊型交互式多模型(interactive multiple model filter based on Bayesian network,BN-IMM)濾波算法。該算法在多模型估計基礎上,引入特徵變量,併根據變量與繫統模型之間存在的因果關繫建立貝葉斯網絡;利用貝葉斯網絡參數脩正多模型估計中的模型切換概率,能夠降低多模型算法中真實模式識彆對先驗知識的依賴性。該算法能夠解決交互式多模型(interactive multiple model,IMM)算法中模型轉換存在滯後、模型概率易髮生跳變等問題,增彊多模型算法的自適應能力。以陀螺和加速度計的輸齣作為特徵變量建立貝葉斯網絡,對 AUV 組閤導航繫統進行倣真,結果錶明所提齣的 BN-IMM 算法相比于傳統的IMM 算法能夠顯著提高機動狀態時模型轉換速度和估計精度。
침대복잡배경하자주수하항행기(autonomous underwater vehicle,AUV)조합도항계통중존재조성불학정혹자역발생변화적정황,제출일충패협사망락증강형교호식다모형(interactive multiple model filter based on Bayesian network,BN-IMM)려파산법。해산법재다모형고계기출상,인입특정변량,병근거변량여계통모형지간존재적인과관계건립패협사망락;이용패협사망락삼수수정다모형고계중적모형절환개솔,능구강저다모형산법중진실모식식별대선험지식적의뢰성。해산법능구해결교호식다모형(interactive multiple model,IMM)산법중모형전환존재체후、모형개솔역발생도변등문제,증강다모형산법적자괄응능력。이타라화가속도계적수출작위특정변량건립패협사망락,대 AUV 조합도항계통진행방진,결과표명소제출적 BN-IMM 산법상비우전통적IMM 산법능구현저제고궤동상태시모형전환속도화고계정도。
An improved interactive multiple model filter based on Bayesian network (BN-IMM)is pro-posed.The aim is to resolve the problem when the noise of the autonomous underwater vehicle (AUV)integrated navigation system in the tough environment is uncertain or time-varying.The proposed algorithm builds a Bayes-ian network according to the relationship of characteristic variables and the system model.The parameters of the Bayesian network are used to correct the model probabilities in the interactive multiple model (IMM)algorithm which can reduce the dependence to the prior knowledge in the real mode recognition of the system.The pro-posed method can solve the problems of time lag in model transformation and probability jump in the IMM algo-rithm.The outputs of gyros and accelerometers are used as characteristic variables to establish the Bayesian net-work.Simulation results show that the BN-IMM algorithm can improve the model converting speed and the pre-cision of estimation significantly when the AUV is in maneuvering state.