计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
9期
158-163
,共6页
识别%叶片多特征%监督局部线性嵌入%加权局部线性嵌入%降维%差异性值
識彆%葉片多特徵%鑑督跼部線性嵌入%加權跼部線性嵌入%降維%差異性值
식별%협편다특정%감독국부선성감입%가권국부선성감입%강유%차이성치
recognition%leaves multi-feature%supervised locally linear embedding%weighted locally linear embedding%dimension reduction%dissimilarity
为了提高植物叶片图像识别的准确率,提出一种基于差异性值监督局部线性嵌入(D-LLE)算法的多特征植物叶片图像识别方法。该方法提取叶片的颜色、形状和纹理作为叶片多特征,在加权局部线性嵌入(WLLE)算法中引入样本的差异性值构成差异性值监督LLE算法(D-LLE)对叶片高维特征进行降维,在低维空间采用最近邻分类器实现叶片的识别。该方法所用的叶片多特征比单一特征像素值更能描述叶片图像,同时差异性值能够充分挖掘样本的类别信息。基于实拍的叶片图像数据库的实验结果表明,该方法有效提高了叶片的识别精度。
為瞭提高植物葉片圖像識彆的準確率,提齣一種基于差異性值鑑督跼部線性嵌入(D-LLE)算法的多特徵植物葉片圖像識彆方法。該方法提取葉片的顏色、形狀和紋理作為葉片多特徵,在加權跼部線性嵌入(WLLE)算法中引入樣本的差異性值構成差異性值鑑督LLE算法(D-LLE)對葉片高維特徵進行降維,在低維空間採用最近鄰分類器實現葉片的識彆。該方法所用的葉片多特徵比單一特徵像素值更能描述葉片圖像,同時差異性值能夠充分挖掘樣本的類彆信息。基于實拍的葉片圖像數據庫的實驗結果錶明,該方法有效提高瞭葉片的識彆精度。
위료제고식물협편도상식별적준학솔,제출일충기우차이성치감독국부선성감입(D-LLE)산법적다특정식물협편도상식별방법。해방법제취협편적안색、형상화문리작위협편다특정,재가권국부선성감입(WLLE)산법중인입양본적차이성치구성차이성치감독LLE산법(D-LLE)대협편고유특정진행강유,재저유공간채용최근린분류기실현협편적식별。해방법소용적협편다특정비단일특정상소치경능묘술협편도상,동시차이성치능구충분알굴양본적유별신식。기우실박적협편도상수거고적실험결과표명,해방법유효제고료협편적식별정도。
A recognition method of multi-feature plant leaves based on dissimilarity-supervised locally linear embedding algorithm is proposed to improve the recognition accuracy in plant leaves recognition. The features of color, shape and tex-ture are extracted as leaves multi-feature, and the sample dissimilarity is brought into weighted locally linear embedding to form the supervised LLE algorithm to reduce leaves multi-feature dimension;the nearest classifier is used to recognize leaves category in low dimension space. The leaves multi-feature are better than pixels to describe leaves, at the same time, dissimilarity can mine sample category information fully. The experimental results based on real plant leaf databases show that the proposed method improves the leaves recognition accuracy effectively.