系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2015年
4期
740-745
,共6页
李翠芸%曹潇男%廖良雄%江舟
李翠蕓%曹瀟男%廖良雄%江舟
리취예%조소남%료량웅%강주
检测前跟踪%概率假设密度%高斯粒子滤波%红外图像%多目标跟踪
檢測前跟蹤%概率假設密度%高斯粒子濾波%紅外圖像%多目標跟蹤
검측전근종%개솔가설밀도%고사입자려파%홍외도상%다목표근종
track-before-detect (TBD)%probability hypothesis density (PHD)%Gaussian particle filter (GPF)%infrared image%multiple-target tracking
针对现有多个弱小目标检测前跟踪(track-before-detect,TBD)算法存在的跟踪精度低,算法复杂度高等问题,提出一种新的基于概率假设密度(probability hypothesis density,PHD)的 TBD 算法。所提算法通过高斯粒子滤波对 PHD 中的各高斯项进行递归运算、进行多帧能量累积,并提取高斯项的均值为目标的状态,达到检测与跟踪多个弱小目标的目的。算法在随机集滤波框架下完成未知数目的多个弱小目标跟踪,不仅充分利用粒子滤波的非线性估计能力,同时避免了传统算法利用模糊聚类进行目标状态提取所带来的跟踪精度低等问题。仿真结果表明,所提算法与传统方法相比,在降低算法复杂度的同时,对多个红外弱小目标具有更加良好的实时检测和跟踪性能。
針對現有多箇弱小目標檢測前跟蹤(track-before-detect,TBD)算法存在的跟蹤精度低,算法複雜度高等問題,提齣一種新的基于概率假設密度(probability hypothesis density,PHD)的 TBD 算法。所提算法通過高斯粒子濾波對 PHD 中的各高斯項進行遞歸運算、進行多幀能量纍積,併提取高斯項的均值為目標的狀態,達到檢測與跟蹤多箇弱小目標的目的。算法在隨機集濾波框架下完成未知數目的多箇弱小目標跟蹤,不僅充分利用粒子濾波的非線性估計能力,同時避免瞭傳統算法利用模糊聚類進行目標狀態提取所帶來的跟蹤精度低等問題。倣真結果錶明,所提算法與傳統方法相比,在降低算法複雜度的同時,對多箇紅外弱小目標具有更加良好的實時檢測和跟蹤性能。
침대현유다개약소목표검측전근종(track-before-detect,TBD)산법존재적근종정도저,산법복잡도고등문제,제출일충신적기우개솔가설밀도(probability hypothesis density,PHD)적 TBD 산법。소제산법통과고사입자려파대 PHD 중적각고사항진행체귀운산、진행다정능량루적,병제취고사항적균치위목표적상태,체도검측여근종다개약소목표적목적。산법재수궤집려파광가하완성미지수목적다개약소목표근종,불부충분이용입자려파적비선성고계능력,동시피면료전통산법이용모호취류진행목표상태제취소대래적근종정도저등문제。방진결과표명,소제산법여전통방법상비,재강저산법복잡도적동시,대다개홍외약소목표구유경가량호적실시검측화근종성능。
In order to avoid the low tracking accuracy and high complexity problems in the conventional al-gorithms,a novel track-before-detect algorithm based on probability hypothesis density (PHD)filter is pro-posed for the tracking and detection of the multiple dim targets in the infrared image.With the Gaussian particle filter,the Gaussian components in PHD can be operated recursively and extracted as the states of targets.The algorithm can realize the tracking and detection of the multiple dim targets by the energy accumulation.With the theory of the random finite set,the algorithm performs the multiple dim targets tracking with unknown num-ber.It can not only make use of the nonlinear estimation ability of the particle filter but also avoid the tracking inaccuracy which is brought by the fuzzy clustering.Simulation results with the infrared images show that the proposed algorithm has the low complexity and the better performance in the detection and tracking multiple dim targets than the conventional algorithm.