计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
9期
217-220,247
,共5页
表面肌电信号%人机接口%小波包多尺度分解%特征表示%模式识别
錶麵肌電信號%人機接口%小波包多呎度分解%特徵錶示%模式識彆
표면기전신호%인궤접구%소파포다척도분해%특정표시%모식식별
surface electromyogram(EMG)signals%man-machine interface%multi-scale decomposition of wavelet packet%feature representation%pattern recognition
为提高智能轮椅人机接口中表面肌电信号的正确识别率和识别效率,主要研究了基于小波包多尺度分解的特征表示及识别。把采集的表面肌电信号在指定尺度及核函数的同一组正交小波包基下进行分解,用小波包多尺度分解的系数构造表面肌电信号的特征基向量。考虑到多通道表面肌电信号可能存在特征信息冗余,为消除这些冗余信息,对多通道表面肌电信号的特征空间通过正交规范化进行重构,并且用重构特征向量的对偶坐标向量作为表面肌电信号的最终特征表示。用非线性自回归神经网络实现了双通道表面肌电信号四种不同动作模式的分类。实验结果表明,小波包多尺度分解系数的重构对偶坐标向量不仅可作为表面肌电信号的特征表示,并能有效简化分类器的结构。
為提高智能輪椅人機接口中錶麵肌電信號的正確識彆率和識彆效率,主要研究瞭基于小波包多呎度分解的特徵錶示及識彆。把採集的錶麵肌電信號在指定呎度及覈函數的同一組正交小波包基下進行分解,用小波包多呎度分解的繫數構造錶麵肌電信號的特徵基嚮量。攷慮到多通道錶麵肌電信號可能存在特徵信息冗餘,為消除這些冗餘信息,對多通道錶麵肌電信號的特徵空間通過正交規範化進行重構,併且用重構特徵嚮量的對偶坐標嚮量作為錶麵肌電信號的最終特徵錶示。用非線性自迴歸神經網絡實現瞭雙通道錶麵肌電信號四種不同動作模式的分類。實驗結果錶明,小波包多呎度分解繫數的重構對偶坐標嚮量不僅可作為錶麵肌電信號的特徵錶示,併能有效簡化分類器的結構。
위제고지능륜의인궤접구중표면기전신호적정학식별솔화식별효솔,주요연구료기우소파포다척도분해적특정표시급식별。파채집적표면기전신호재지정척도급핵함수적동일조정교소파포기하진행분해,용소파포다척도분해적계수구조표면기전신호적특정기향량。고필도다통도표면기전신호가능존재특정신식용여,위소제저사용여신식,대다통도표면기전신호적특정공간통과정교규범화진행중구,병차용중구특정향량적대우좌표향량작위표면기전신호적최종특정표시。용비선성자회귀신경망락실현료쌍통도표면기전신호사충불동동작모식적분류。실험결과표명,소파포다척도분해계수적중구대우좌표향량불부가작위표면기전신호적특정표시,병능유효간화분류기적결구。
To improve the correct recognition rate and efficiency of surface electromyogram signals(SEMGS)on the man-machine interface of smart wheelchair, feature representation and recognition are mainly studied based on wavelet packet multi-scale decomposition. The collected SEMGS are decomposed at the specified scale and kernel functions according to the same set of orthogonal wavelet packet basis, and then this paper uses multi-scale decomposition coefficients of wavelet packet to construct the feature base vectors of SEMGS. Considering the possible feature information redundancy of multi-channel SEMGS, to eliminate the redundant information, reconstruction is done to the feature space of multi-channel SEMGS by orthogonal normalization, and it uses the dual coordinate vectors of refactoring feature vectors as the final feature rep-resentation of multi-channel SEMGS. It uses Nonlinear Autoregressive neural network(NARX)to realize the classification of four different action patterns of two channels of SEMGS. Experimental results show that the reconstructed dual coordi-nate vectors of wavelet packet multi-scale decomposition can not only be used as the feature representation of SEMGS, but also simplify the structure of classifier effectively.