自动化学报
自動化學報
자동화학보
ACTA AUTOMATICA SINICA
2015年
4期
686-693
,共8页
干梦迪%王寿光%周孟初%李俊%李月
榦夢迪%王壽光%週孟初%李俊%李月
간몽적%왕수광%주맹초%리준%리월
无界Petri网%可达树%可达性问题%离散事件系统
無界Petri網%可達樹%可達性問題%離散事件繫統
무계Petri망%가체수%가체성문제%리산사건계통
Unbounded Petri nets%reachability tree%reachability problem%discrete event system
Petri 网自提出以来得到了学术界和工业界的广泛关注。 Petri 网系统的可达性是最基本性质之一。系统的其他相关性质都可以通过可达性进行分析。利用等价的有限可达树来研究无界Petri 网可达性,依然是一个开放性问题。该研究可以追溯到40年前,但由于问题本身的复杂性和难度太大,直到最近20年,经过国内外诸多学者的不懈努力,才逐渐取得了一些阶段性的成果和部分突破。本文回顾了近40年来国内外学者为彻底解决该问题作出的贡献。重点对4种开创性的研究成果展开讨论,分别为有限可达树、扩展可达树、改进可达树及新型改进可达树。探讨了今后无界Petri网可达性问题的研究方向。
Petri 網自提齣以來得到瞭學術界和工業界的廣汎關註。 Petri 網繫統的可達性是最基本性質之一。繫統的其他相關性質都可以通過可達性進行分析。利用等價的有限可達樹來研究無界Petri 網可達性,依然是一箇開放性問題。該研究可以追溯到40年前,但由于問題本身的複雜性和難度太大,直到最近20年,經過國內外諸多學者的不懈努力,纔逐漸取得瞭一些階段性的成果和部分突破。本文迴顧瞭近40年來國內外學者為徹底解決該問題作齣的貢獻。重點對4種開創性的研究成果展開討論,分彆為有限可達樹、擴展可達樹、改進可達樹及新型改進可達樹。探討瞭今後無界Petri網可達性問題的研究方嚮。
Petri 망자제출이래득도료학술계화공업계적엄범관주。 Petri 망계통적가체성시최기본성질지일。계통적기타상관성질도가이통과가체성진행분석。이용등개적유한가체수래연구무계Petri 망가체성,의연시일개개방성문제。해연구가이추소도40년전,단유우문제본신적복잡성화난도태대,직도최근20년,경과국내외제다학자적불해노력,재축점취득료일사계단성적성과화부분돌파。본문회고료근40년래국내외학자위철저해결해문제작출적공헌。중점대4충개창성적연구성과전개토론,분별위유한가체수、확전가체수、개진가체수급신형개진가체수。탐토료금후무계Petri망가체성문제적연구방향。
In recent years both industry and academia have paid much attention to the theory and applications of Petri nets. Reachability is a basic property of a Petri net, and many properties can be analyzed via it. However, analyzing the reachability problem of unbounded Petri nets by finite reachability trees has been an open problem since the inception of Petri nets. Researchers began to study the problem of reachability trees over 40 years ago. However, they made only limited progress over the last 20 years due to its complexity and di?culty. We present an overview of some important contributions toward its solution. The focuses are on four novel finite reachability trees: finite reachability tree (FRT), augmented reachability tree (ART), modified reachability tree (MRT) and new modified reachailbity tree (NMRT). The paper concludes with a discussion of directions for future research of the reachability problem of unbounded Petri nets.