中国安全生产科学技术
中國安全生產科學技術
중국안전생산과학기술
JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY
2015年
4期
185-191
,共7页
航空维修差错%CREAM%贝叶斯网络%共同绩效条件%失效概率
航空維脩差錯%CREAM%貝葉斯網絡%共同績效條件%失效概率
항공유수차착%CREAM%패협사망락%공동적효조건%실효개솔
aviation maintenance error%CREAM%Bayesian network%CPC%failure probability
航空维修差错不仅严重威胁着飞行安全,同时也会增加航空公司的维修成本。针对航空维修人员发生差错成因的复杂性以及历史事故数据缺乏的情况下,将人因可靠性与失误分析方法( CREAM)和贝叶斯网络( BN)相结合,提出一种改进的维修差错分析模型。根据维修任务构建相应的贝叶斯网络模型,为各子节点设置条件概率表( CPT);基于维修基地的实际维修环境,对行为形成因子( PSFs)进行评估,得到共同绩效条件( CPCs)的水平;利用各CPC因子下各个行为功能失效模式的权重因子,对各认知活动进行失效概率的修正;将修正概率作为贝叶斯网络根节点的输入,利用推理机制,得到差错发生概率。通过案例分析和计算,验证了所述方法的可行性和有效性。
航空維脩差錯不僅嚴重威脅著飛行安全,同時也會增加航空公司的維脩成本。針對航空維脩人員髮生差錯成因的複雜性以及歷史事故數據缺乏的情況下,將人因可靠性與失誤分析方法( CREAM)和貝葉斯網絡( BN)相結閤,提齣一種改進的維脩差錯分析模型。根據維脩任務構建相應的貝葉斯網絡模型,為各子節點設置條件概率錶( CPT);基于維脩基地的實際維脩環境,對行為形成因子( PSFs)進行評估,得到共同績效條件( CPCs)的水平;利用各CPC因子下各箇行為功能失效模式的權重因子,對各認知活動進行失效概率的脩正;將脩正概率作為貝葉斯網絡根節點的輸入,利用推理機製,得到差錯髮生概率。通過案例分析和計算,驗證瞭所述方法的可行性和有效性。
항공유수차착불부엄중위협착비행안전,동시야회증가항공공사적유수성본。침대항공유수인원발생차착성인적복잡성이급역사사고수거결핍적정황하,장인인가고성여실오분석방법( CREAM)화패협사망락( BN)상결합,제출일충개진적유수차착분석모형。근거유수임무구건상응적패협사망락모형,위각자절점설치조건개솔표( CPT);기우유수기지적실제유수배경,대행위형성인자( PSFs)진행평고,득도공동적효조건( CPCs)적수평;이용각CPC인자하각개행위공능실효모식적권중인자,대각인지활동진행실효개솔적수정;장수정개솔작위패협사망락근절점적수입,이용추리궤제,득도차착발생개솔。통과안례분석화계산,험증료소술방법적가행성화유효성。
Aviation maintenance errors could not only threaten fight safety, but also increase the maintenance cost of airlines.Due to the complexity in causes of human error by aviation maintenance personnel and the lack of e-nough historical accident data, an improved model on error analysis of aviation maintenance was proposed based on cognitive reliability and error analysis method( CREAM) and Bayesian network.Firstly, according to maintenance tasks, the Bayesian network model of maintenance error was constructed, and the conditional probabilities table ( CPT) of each child node was determined.Secondly, based on the practical maintenance environment of certain maintenance base, the performance shaping factors( PSFs) were assessed, and the levels of common performance conditions( CPCs) were obtained.Then, the weighting factors of each behavioral function failure mode under each CPC factor were used to revise the failure probabilities of cognitive activities.Finally, the revised probabilities were regarded as the input of root node in Bayesian network, and the maintenance error probability was calculated by u-sing reasoning mechanism.The feasibility and effectiveness of the method were validated by the case study.