武汉理工大学学报(信息与管理工程版)
武漢理工大學學報(信息與管理工程版)
무한리공대학학보(신식여관리공정판)
JOURNAL OF WUHAN AUTOMOTIVE POLYTECHNIC UNIVERSITY
2015年
2期
156-160,178
,共6页
邱世崇%陆百川%马庆禄%邹巍%张勤
邱世崇%陸百川%馬慶祿%鄒巍%張勤
구세숭%륙백천%마경록%추외%장근
城市道路%短时交通流预测%数据融合%时间特性%空间特性
城市道路%短時交通流預測%數據融閤%時間特性%空間特性
성시도로%단시교통류예측%수거융합%시간특성%공간특성
urban road%short-term traffic flow forecasting%data fusion%temporal characteristics%spatial characteristics
短时交通流预测是城市道路交通控制和交通诱导的关键技术之一,针对其考虑因素单一、预测精度不高的问题,提出了一种基于时空特性分析和数据融合的预测方法。首先,分析了交通流时间特性、时间相关性和基于时间序列数据的预测方法。其次,在对交通流空间特性、空间互相关性分析的基础上,提出了以相邻路段流量为自变量,采用多元逐步线性回归对目标路段流量估计预测的方法。最后,分析了交通流的时空关联特性,同时考虑到时间和空间因素,利用最小二乘动态加权融合算法将基于时间序列数据预测结果和空间回归估计预测结果进行融合输出最终结果。仿真结果表明,对比单一时间序列和空间回归估计预测方法,所提出的方法有效提高了短时交通流预测精度。
短時交通流預測是城市道路交通控製和交通誘導的關鍵技術之一,針對其攷慮因素單一、預測精度不高的問題,提齣瞭一種基于時空特性分析和數據融閤的預測方法。首先,分析瞭交通流時間特性、時間相關性和基于時間序列數據的預測方法。其次,在對交通流空間特性、空間互相關性分析的基礎上,提齣瞭以相鄰路段流量為自變量,採用多元逐步線性迴歸對目標路段流量估計預測的方法。最後,分析瞭交通流的時空關聯特性,同時攷慮到時間和空間因素,利用最小二乘動態加權融閤算法將基于時間序列數據預測結果和空間迴歸估計預測結果進行融閤輸齣最終結果。倣真結果錶明,對比單一時間序列和空間迴歸估計預測方法,所提齣的方法有效提高瞭短時交通流預測精度。
단시교통류예측시성시도로교통공제화교통유도적관건기술지일,침대기고필인소단일、예측정도불고적문제,제출료일충기우시공특성분석화수거융합적예측방법。수선,분석료교통류시간특성、시간상관성화기우시간서렬수거적예측방법。기차,재대교통류공간특성、공간호상관성분석적기출상,제출료이상린로단류량위자변량,채용다원축보선성회귀대목표로단류량고계예측적방법。최후,분석료교통류적시공관련특성,동시고필도시간화공간인소,이용최소이승동태가권융합산법장기우시간서렬수거예측결과화공간회귀고계예측결과진행융합수출최종결과。방진결과표명,대비단일시간서렬화공간회귀고계예측방법,소제출적방법유효제고료단시교통류예측정도。
Short-term traffic flow forecasting is one of the key technologies for urban road traffic control and guidance.The prediction precision of existing methods is not high due to single consideration.A new forecasting method based on spatiotemporal characteristic analysis and data fusion was proposed.Firstly, temporal characteristics, correlation and forecasting method based on time series data of traffic flow were analyzed.Secondly, after analyzing spatial characteristic and mutual-correlation of traffic flow, a prediction method was proposed using multivariate step linear regression to estimate the target road traffic flow, which of-fered by adjacent road traffic flow as independent variable.Finally, spatio-temporal correlation characteristics of traffic flow were analyzed, considering temporal and spatial factors simultaneously.The the final result was obtained by least squares and dynamic weighted data fusion algorithm.The result of temporal was fused with spatial predictions.Compared with the former two methods, instance simulation results show that the proposed method improves the forecasting accuracy of short-term traffic flow effectively.