智能电网
智能電網
지능전망
Smart Grid
2015年
4期
298-302
,共5页
经验模态分解%灰色相似关联度%绝缘子污秽放电%声发射%放电识别
經驗模態分解%灰色相似關聯度%絕緣子汙穢放電%聲髮射%放電識彆
경험모태분해%회색상사관련도%절연자오예방전%성발사%방전식별
empirical mode decomposition%grey similar incidence%contaminated insulator discharge%acoustic emission%discharge recognition
在深入研究污秽绝缘子放电声发射信号的基础上,提出通过对污秽绝缘子放电声信号进行经验模态分解和灰色相似关联度的方法实现放电程度的识别。针对不同放电模式下的声信号进行经验模态分解得到本征模态分量,计算电晕放电、局部放电和电弧放电3种放电模式的声发射信号各阶本征模态分量能量分布。根据前几阶本征模态分量的能量分布构造特征矢量,计算声发射信号与不同放电模式的特征矢量的灰色相似关联度判断绝缘子所处的放电阶段,实现绝缘子外绝缘状态的监测。实例计算结果表明该方法的有效性。
在深入研究汙穢絕緣子放電聲髮射信號的基礎上,提齣通過對汙穢絕緣子放電聲信號進行經驗模態分解和灰色相似關聯度的方法實現放電程度的識彆。針對不同放電模式下的聲信號進行經驗模態分解得到本徵模態分量,計算電暈放電、跼部放電和電弧放電3種放電模式的聲髮射信號各階本徵模態分量能量分佈。根據前幾階本徵模態分量的能量分佈構造特徵矢量,計算聲髮射信號與不同放電模式的特徵矢量的灰色相似關聯度判斷絕緣子所處的放電階段,實現絕緣子外絕緣狀態的鑑測。實例計算結果錶明該方法的有效性。
재심입연구오예절연자방전성발사신호적기출상,제출통과대오예절연자방전성신호진행경험모태분해화회색상사관련도적방법실현방전정도적식별。침대불동방전모식하적성신호진행경험모태분해득도본정모태분량,계산전훈방전、국부방전화전호방전3충방전모식적성발사신호각계본정모태분량능량분포。근거전궤계본정모태분량적능량분포구조특정시량,계산성발사신호여불동방전모식적특정시량적회색상사관련도판단절연자소처적방전계단,실현절연자외절연상태적감측。실례계산결과표명해방법적유효성。
On the basis of in-depth study of acoustic emission signals emitted from contaminated insulator discharge, a new method is proposed to achieve contaminated insulator discharge recognition by empirical mode decomposition and grey similar incidence. The intrinsic mode functions of sound signals in different discharge modes is got by empirical mode decomposition and the energy distribution of acoustic emission signals intrinsic mode components in three discharge modes which include the corona discharge, partial discharge and arc discharge is calculated. The feature vector is constructed according to the energy distribution of the first few intrinsic mode components containing the most dominant information. The grey similar incidence of different acoustic emission signals and feature vector in different discharge modes is calculated to identify the discharge modes of the insulator, which realizes the monitoring of the external insulation condition of insulator. Practical calculation results show the effectiveness of this method.