中国医疗器械杂志
中國醫療器械雜誌
중국의료기계잡지
CHINESE JOURNAL OF MEDICAL INSTRUMENTATION
2015年
2期
87-89,112
,共4页
李奇磊%杨明%欧文初%孟凡%许自豪%徐亮
李奇磊%楊明%歐文初%孟凡%許自豪%徐亮
리기뢰%양명%구문초%맹범%허자호%서량
神经网络%遗传算法%人工心脏%Matlab仿真%CompactRIO
神經網絡%遺傳算法%人工心髒%Matlab倣真%CompactRIO
신경망락%유전산법%인공심장%Matlab방진%CompactRIO
neural network%genetic algorithm%artificial heart%Matlab simulation%CompactRIO
为了实现人工心脏泵的无传感器温度预测方法,该文研究了应用BP神经网络和遗传算法预测其温度的方法。针对人工心脏泵在植入人体后所受到的环境限制,研究通过体外较易测量的参数预测泵体运行温度。对比了BP神经网络的预测精度与遗传算法优化后的BP网络预测精度。经实验验证,出现误差大于1%的概率为1.84%。
為瞭實現人工心髒泵的無傳感器溫度預測方法,該文研究瞭應用BP神經網絡和遺傳算法預測其溫度的方法。針對人工心髒泵在植入人體後所受到的環境限製,研究通過體外較易測量的參數預測泵體運行溫度。對比瞭BP神經網絡的預測精度與遺傳算法優化後的BP網絡預測精度。經實驗驗證,齣現誤差大于1%的概率為1.84%。
위료실현인공심장빙적무전감기온도예측방법,해문연구료응용BP신경망락화유전산법예측기온도적방법。침대인공심장빙재식입인체후소수도적배경한제,연구통과체외교역측량적삼수예측빙체운행온도。대비료BP신경망락적예측정도여유전산법우화후적BP망락예측정도。경실험험증,출현오차대우1%적개솔위1.84%。
The purpose of this paper is to achieve a measurement of temperature prediction for artificial heart without sensor, for which the research briefly describes the application of back propagation neural network as wel as the optimized, by genetic algorithm, BP network. Owing to the limit of environment after the artificial heart implanted, detectable parameters out of body are taken advantage of to predict the working temperature of the pump. Lastly, contrast is made to demonstrate the prediction result between BP neural network and genetical y optimized BP network, by which indicates that the probability is 1.84%with the margin of error more than 1%.