计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2015年
4期
962-966,971
,共6页
奇异值分解%信号重建%模型%相似度%均方误差%信噪比
奇異值分解%信號重建%模型%相似度%均方誤差%信譟比
기이치분해%신호중건%모형%상사도%균방오차%신조비
singular value decomposition%signal reconstruction%model%similarity%mean-squared error (MSE)%signal to noise ratio (SNR)
以大数据低秩逼近与噪声消除问题为背景,针对信号近似表示与重建需要,提出信号在奇异值分解(SVD)基础上的低秩逼近线性模型。为使模型能够处理一维信号,从结构相似的角度出发引入3种结构矩阵构建模型,分析各自的结构特点;讨论信号 SVD 重建的通用算法及信号去噪声应用方法。进行 SVD 阈值去噪声及低秩逼近与小波阈值收缩去噪声的对比实验,实验结果表明了该模型在直观效果和均方误差、信噪比等统计特征方面的实用性。
以大數據低秩逼近與譟聲消除問題為揹景,針對信號近似錶示與重建需要,提齣信號在奇異值分解(SVD)基礎上的低秩逼近線性模型。為使模型能夠處理一維信號,從結構相似的角度齣髮引入3種結構矩陣構建模型,分析各自的結構特點;討論信號 SVD 重建的通用算法及信號去譟聲應用方法。進行 SVD 閾值去譟聲及低秩逼近與小波閾值收縮去譟聲的對比實驗,實驗結果錶明瞭該模型在直觀效果和均方誤差、信譟比等統計特徵方麵的實用性。
이대수거저질핍근여조성소제문제위배경,침대신호근사표시여중건수요,제출신호재기이치분해(SVD)기출상적저질핍근선성모형。위사모형능구처리일유신호,종결구상사적각도출발인입3충결구구진구건모형,분석각자적결구특점;토론신호 SVD 중건적통용산법급신호거조성응용방법。진행 SVD 역치거조성급저질핍근여소파역치수축거조성적대비실험,실험결과표명료해모형재직관효과화균방오차、신조비등통계특정방면적실용성。
In the background of low-rank approximation and noise-elimination for big data,aiming at the needs of signal approxi-mation and reconstruction,a linear low-rank approximation model based on singular value decomposition (SVD)of signal was presented.To handle one-dimensional signal with the SVD approximation model,three structural matrix-construction models were introduced from the perspective of structure similarity,and their structural characteristics were analyzed.Then,the gene-ral signal reconstruction algorithm and signal denoising application methods were described.Finally,through the contrast experi-ments of SVD low rank approximation method and wavelet threshold shrinkage denoising method,the visual effect and the mean-squared error,signal to noise ratio and other statistical characteristics verify the practicability of the model.