计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2015年
4期
1058-1062
,共5页
吴明辉%许爱强%孙伟超%裘璐光
吳明輝%許愛彊%孫偉超%裘璐光
오명휘%허애강%손위초%구로광
趋势结构%时序数据%粒子群%免疫遗传%模糊 C 均值%聚类
趨勢結構%時序數據%粒子群%免疫遺傳%模糊 C 均值%聚類
추세결구%시서수거%입자군%면역유전%모호 C 균치%취류
trending structure%time series data%particle swarm optimization%immune genetic%fuzzy C-means%clustering
针对多属性单一趋势结构时序数据的特点,提出一种加权免疫遗传模糊 C 均值聚类方法。为确立相似度权值,建立权值优化模型,利用改进离子群算法对模型进行求解;针对传统模糊 C 均值初始中心敏感的问题,将免疫机理引入到遗传算法框架中,对模糊 C 均值进行改进。实例验证结果表明,权值优化模型是合理有效的,求解方法具有较高的收敛精度及速度,与其它方法相比,聚类方法具有较高的收敛精度。
針對多屬性單一趨勢結構時序數據的特點,提齣一種加權免疫遺傳模糊 C 均值聚類方法。為確立相似度權值,建立權值優化模型,利用改進離子群算法對模型進行求解;針對傳統模糊 C 均值初始中心敏感的問題,將免疫機理引入到遺傳算法框架中,對模糊 C 均值進行改進。實例驗證結果錶明,權值優化模型是閤理有效的,求解方法具有較高的收斂精度及速度,與其它方法相比,聚類方法具有較高的收斂精度。
침대다속성단일추세결구시서수거적특점,제출일충가권면역유전모호 C 균치취류방법。위학립상사도권치,건립권치우화모형,이용개진리자군산법대모형진행구해;침대전통모호 C 균치초시중심민감적문제,장면역궤리인입도유전산법광가중,대모호 C 균치진행개진。실례험증결과표명,권치우화모형시합리유효적,구해방법구유교고적수렴정도급속도,여기타방법상비,취류방법구유교고적수렴정도。
According to the characteristic of multidimensional time series data of unitary trending structure,a weighted immune genetic fuzzy C-means clustering model was proposed.To clarify the similarity weights,weighted optimization model was estab-lished and the model was solved by using the improved particle swarm optimization algorithm.To overcome the problem that tra-ditional fuzzy C-means algorithm is sensitive to initial center,the immune mechanism was introduced into the genetic framework to improve fuzzy C-means algorithm.The experimental results show that the weighted optimization model is reasonable and ef-fective and the solving method has higher convergence precision and speed.The clustering method has higher convergence preci-sion compared with other methods.