计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2015年
4期
1046-1050
,共5页
曹萌萌%皇甫大恩%刘晓斐
曹萌萌%皇甫大恩%劉曉斐
조맹맹%황보대은%류효비
人工蜂群算法%群体智能算法%人工智能%收益度分配%粒子群算法
人工蜂群算法%群體智能算法%人工智能%收益度分配%粒子群算法
인공봉군산법%군체지능산법%인공지능%수익도분배%입자군산법
artificial colony algorithm%swarm intelligence algorithm%artificial intelligence%income degree distribution%particle swarm optimization
针对人工蜂群算法收敛速度较慢和容易早熟的缺点,提出一种基于改进收益度的人工蜂群算法。采用分段函数的方法计算收益度,加大收益度之间的区别,更容易选中位置更好的蜜蜂进行更新;借鉴粒子群思想,在观察蜂的更新公式中增加全局最优个体的信息反馈,加快人工蜂群算法的收敛速度。在8个测试函数上的仿真和对比实验结果表明,在30维上有7个函数的测试结果优于其它算法,在5个函数上的 T 测试结果有显著提高,在函数维数加到60维时仍然有7个函数测试结果优于其它算法,将函数维数进一步加大到100维函时,该算法依然具有很强的鲁棒性和处理高维复杂函数的能力。
針對人工蜂群算法收斂速度較慢和容易早熟的缺點,提齣一種基于改進收益度的人工蜂群算法。採用分段函數的方法計算收益度,加大收益度之間的區彆,更容易選中位置更好的蜜蜂進行更新;藉鑒粒子群思想,在觀察蜂的更新公式中增加全跼最優箇體的信息反饋,加快人工蜂群算法的收斂速度。在8箇測試函數上的倣真和對比實驗結果錶明,在30維上有7箇函數的測試結果優于其它算法,在5箇函數上的 T 測試結果有顯著提高,在函數維數加到60維時仍然有7箇函數測試結果優于其它算法,將函數維數進一步加大到100維函時,該算法依然具有很彊的魯棒性和處理高維複雜函數的能力。
침대인공봉군산법수렴속도교만화용역조숙적결점,제출일충기우개진수익도적인공봉군산법。채용분단함수적방법계산수익도,가대수익도지간적구별,경용역선중위치경호적밀봉진행경신;차감입자군사상,재관찰봉적경신공식중증가전국최우개체적신식반궤,가쾌인공봉군산법적수렴속도。재8개측시함수상적방진화대비실험결과표명,재30유상유7개함수적측시결과우우기타산법,재5개함수상적 T 측시결과유현저제고,재함수유수가도60유시잉연유7개함수측시결과우우기타산법,장함수유수진일보가대도100유함시,해산법의연구유흔강적로봉성화처리고유복잡함수적능력。
To solve the problem that the basic artificial bee colony algorithm converges slowly and prematurely,an artificial bee colony based on the improved income distribution was proposed.The bee with better position was easier to be selected to update when the difference of income degrees increased by adopting the method of piecewise function to calculate the income.At the same time,based on the particle swarm thought,the global optimal individual was added in observing bees update formula to in-crease the algorithm’s convergence speed.The simulation results of the problem in eight test functions show that,seven function test results are superior to other algorithms on the 30 d and the T-test show that the results on the five functions are significantly improved.Also seven function test results are superior to other algorithms on the 60 d,what’s more,when the function dimension in-crease to 100 d,the algorithm still has strong robustness and the ability to deal with high-dimensional complex functions.