润滑与密封
潤滑與密封
윤활여밀봉
LUBRICATION ENGINEERING
2015年
3期
52-56,83
,共6页
曲轴轴承%载荷平衡%流体动力润滑%收敛性
麯軸軸承%載荷平衡%流體動力潤滑%收斂性
곡축축승%재하평형%류체동력윤활%수렴성
crankshaft bearing%load balance%hydrodynamic lubrication%convergence
运用载荷平衡方程并基于流体动力润滑理论建立曲轴系流体动力学的数学模型,然后综合采用有限差分和数值迭代方法提出该模型的数值求解算法;在此基础上,以某单缸柴油机曲轴系为例研究网格密度、松弛因子以及求解边界条件等因素对数值仿真结果的收性影响。计算表明,润滑特性求解的网格密度宜取轴承周向网格数m=40,轴承轴向网格数n=20;超松弛因子β的取值范围应控制在1?5~1?9内;当空穴压力较大时, JFO边界条件所得结果相比雷诺边界条件更准确。
運用載荷平衡方程併基于流體動力潤滑理論建立麯軸繫流體動力學的數學模型,然後綜閤採用有限差分和數值迭代方法提齣該模型的數值求解算法;在此基礎上,以某單缸柴油機麯軸繫為例研究網格密度、鬆弛因子以及求解邊界條件等因素對數值倣真結果的收性影響。計算錶明,潤滑特性求解的網格密度宜取軸承週嚮網格數m=40,軸承軸嚮網格數n=20;超鬆弛因子β的取值範圍應控製在1?5~1?9內;噹空穴壓力較大時, JFO邊界條件所得結果相比雷諾邊界條件更準確。
운용재하평형방정병기우류체동력윤활이론건립곡축계류체동역학적수학모형,연후종합채용유한차분화수치질대방법제출해모형적수치구해산법;재차기출상,이모단항시유궤곡축계위례연구망격밀도、송이인자이급구해변계조건등인소대수치방진결과적수성영향。계산표명,윤활특성구해적망격밀도의취축승주향망격수m=40,축승축향망격수n=20;초송이인자β적취치범위응공제재1?5~1?9내;당공혈압력교대시, JFO변계조건소득결과상비뢰낙변계조건경준학。
Based on the load balance equation and the theory of hydrodynamic lubrication, the mathematical model of fluid dynamic of crankshaft system was established. The finite difference method and the iterative method were used to set up the numerical algorithm of this model. The influence of different factors including the mesh density, the relaxation fac?tor and the boundary condition on the convergence of numerical simulation was investigated through a single cylinder en?gine. The results show that it’ s best to mesh with circumferential grid number m=40,axial grid number n=20 and control the relation factor within 1?5~1?9 when solving the bearing lubrication characteristics. The JFO boundary condition is more precise than Reynolds boundary condition when the cavity pressure is high.