机械工程师
機械工程師
궤계공정사
MECHANICAL ENGINEER
2015年
4期
13-16
,共4页
ABAQUS%选区激光熔化%压缩性能%冲击性能
ABAQUS%選區激光鎔化%壓縮性能%遲擊性能
ABAQUS%선구격광용화%압축성능%충격성능
ABAQUS%SLM%compressive property%impact property
采用316L不锈钢粉末基于选区激光熔化技术(Selective Laser Melting,SLM)制备压缩试样,观测其宏观组织形貌,随后进行压缩实验,获得工程应力-应变曲线及材料参数;利用ABAQUS/STANDARD有限元分析模块模拟试样压缩过程,得出仿真工程应力-应变曲线,将其与实验工程应力-应变曲线比较,验证材料参数设置准确性;最后构建规则栅格孔结构模型与交错栅格孔结构模型,利用ABAQUS/EXPLICIT有限元分析模块模拟落体冲击实验与摆锤冲击实验。结果表明:相同宏观体积条件下,基于SLM制备交错栅格孔结构不锈钢材料在落体冲击实验中对冲击能的消耗高于规则栅格孔结构部件,而在摆锤冲击实验中冲击性能差异不显著。
採用316L不鏽鋼粉末基于選區激光鎔化技術(Selective Laser Melting,SLM)製備壓縮試樣,觀測其宏觀組織形貌,隨後進行壓縮實驗,穫得工程應力-應變麯線及材料參數;利用ABAQUS/STANDARD有限元分析模塊模擬試樣壓縮過程,得齣倣真工程應力-應變麯線,將其與實驗工程應力-應變麯線比較,驗證材料參數設置準確性;最後構建規則柵格孔結構模型與交錯柵格孔結構模型,利用ABAQUS/EXPLICIT有限元分析模塊模擬落體遲擊實驗與襬錘遲擊實驗。結果錶明:相同宏觀體積條件下,基于SLM製備交錯柵格孔結構不鏽鋼材料在落體遲擊實驗中對遲擊能的消耗高于規則柵格孔結構部件,而在襬錘遲擊實驗中遲擊性能差異不顯著。
채용316L불수강분말기우선구격광용화기술(Selective Laser Melting,SLM)제비압축시양,관측기굉관조직형모,수후진행압축실험,획득공정응력-응변곡선급재료삼수;이용ABAQUS/STANDARD유한원분석모괴모의시양압축과정,득출방진공정응력-응변곡선,장기여실험공정응력-응변곡선비교,험증재료삼수설치준학성;최후구건규칙책격공결구모형여교착책격공결구모형,이용ABAQUS/EXPLICIT유한원분석모괴모의락체충격실험여파추충격실험。결과표명:상동굉관체적조건하,기우SLM제비교착책격공결구불수강재료재락체충격실험중대충격능적소모고우규칙책격공결구부건,이재파추충격실험중충격성능차이불현저。
Compressive specimen are fabricated by selective laser melting (SLM) using 316L stainless steel powder. Its macrostructure is observed ,the engineering stress-strain curves and material parameter of specimen are obtained by the compression testing. The dynamic compression process of specimen is reproduced by ABAQUS simulation and the simulation engineering stress-strain curves is obtained ,then compares with experiment engineering stress-strain curves and the material parameters are verified. Finally ,the regular grid pore structure model and the stagger grid pore structure model and the falling impact experiment and pendulum impact experiment are simulated by ABAQUS. The results show that the energy dissipated by the stagger grid pore structure model is higher than the regular grid pore structure model with the same macroscopic volume in the falling impact experiment ,but the difference of impact property is not significant in the pendulum impact experiment.