新型炭材料
新型炭材料
신형탄재료
NEW CARBON MATERIALS
2015年
2期
156-166
,共11页
宋涛%廖景明%肖军%沈来宏
宋濤%廖景明%肖軍%瀋來宏
송도%료경명%초군%침래굉
CO2吸附%活性炭%生物质%物理活化%化学活化
CO2吸附%活性炭%生物質%物理活化%化學活化
CO2흡부%활성탄%생물질%물리활화%화학활화
CO2 adsorption%Activated carbon%Biomass%Physical activation%Chemical activation
以玉米秸秆作为生物质活性炭的原材料,CO2作为活化介质,分别以KOH、HNO3和CH3 COOH作活化剂,在800℃下一步法制备出玉米秸秆活性炭,并针对部分样品分别使用KOH、HNO3和CH3 COOH进行化学活化。分别考察CO2活化时间、CO2活化剂浓度、化学活化种类及后续热处理工艺对样品吸附CO2的性能影响。结果表明,化学活化过程可拓展活性炭的空隙结构,显著提高其对CO2的吸附。在最优工艺下(4mol/L HNO3活化+100℃水浴加热1h+600℃热处理),活性炭的比表面积达639.8 m2/g,其CO2捕集效率为7.33%,高于市场商业用活性炭的6.55%。同时,考察活性炭微孔和中孔对CO2吸附的影响规律,并采用Bangham动力学模型探讨样品的吸附性能。
以玉米秸稈作為生物質活性炭的原材料,CO2作為活化介質,分彆以KOH、HNO3和CH3 COOH作活化劑,在800℃下一步法製備齣玉米秸稈活性炭,併針對部分樣品分彆使用KOH、HNO3和CH3 COOH進行化學活化。分彆攷察CO2活化時間、CO2活化劑濃度、化學活化種類及後續熱處理工藝對樣品吸附CO2的性能影響。結果錶明,化學活化過程可拓展活性炭的空隙結構,顯著提高其對CO2的吸附。在最優工藝下(4mol/L HNO3活化+100℃水浴加熱1h+600℃熱處理),活性炭的比錶麵積達639.8 m2/g,其CO2捕集效率為7.33%,高于市場商業用活性炭的6.55%。同時,攷察活性炭微孔和中孔對CO2吸附的影響規律,併採用Bangham動力學模型探討樣品的吸附性能。
이옥미갈간작위생물질활성탄적원재료,CO2작위활화개질,분별이KOH、HNO3화CH3 COOH작활화제,재800℃하일보법제비출옥미갈간활성탄,병침대부분양품분별사용KOH、HNO3화CH3 COOH진행화학활화。분별고찰CO2활화시간、CO2활화제농도、화학활화충류급후속열처리공예대양품흡부CO2적성능영향。결과표명,화학활화과정가탁전활성탄적공극결구,현저제고기대CO2적흡부。재최우공예하(4mol/L HNO3활화+100℃수욕가열1h+600℃열처리),활성탄적비표면적체639.8 m2/g,기CO2포집효솔위7.33%,고우시장상업용활성탄적6.55%。동시,고찰활성탄미공화중공대CO2흡부적영향규률,병채용Bangham동역학모형탐토양품적흡부성능。
Activated carbons ( ACs) were produced by a one step process with CO2 as the physical activation agent at 800 ℃. The ACs were further activated chemically using KOH, HNO3 or CH3 COOH and heat-treated at 300 or 600℃ for 1 or 2 h to modify their properties. The effect of CO2 concentration, activation time, types of chemical agents and the post heat-treatment conditions on CO2 capture were investigated. Results showed that the optimum conditions for AC production from corn stalks was at 800 ℃ for 30 min with a CO2 concentration of 20% during the physical activation. Chemical agents and further heat-treatment modified the pore structure of the ACs, resulting in a performance improvement for CO2 adsorption. The BET surface area of one sample ( HNO3 activation +100 ℃ water bath 1 h+post heat-treatment at 600℃ for 2 h) was 639. 8 m2/g. The maximum CO2 adsorption capaci-ty of the sample was 7. 33%, which is higher than that of a commercial AC (6. 55%). The CO2 adsorption is dominantly depend-ent on the mesopore volume when the BET surface area is smaller than 500 m2/g while the adsorption is closely associated with mi-cropore area when the BET surface area is larger than 500 m2/g. The adsorption kinetics agreed well with the Bangham kinetic mod-el.