模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2015年
4期
316-326
,共11页
张新征%麦晓春%张建芬
張新徵%麥曉春%張建芬
장신정%맥효춘%장건분
地图创建%层级实时记忆(HTM)%位置不变鲁棒特征(PIRF)%视觉词汇%大脑皮层学习算法(CLA)
地圖創建%層級實時記憶(HTM)%位置不變魯棒特徵(PIRF)%視覺詞彙%大腦皮層學習算法(CLA)
지도창건%층급실시기억(HTM)%위치불변로봉특정(PIRF)%시각사회%대뇌피층학습산법(CLA)
Map Building%Hierarchical Temporal Memory(HTM)%Position Invariant Robust Feature(PIRF)%Visual Vocabulary%Cortex Learning Algorithm(CLA)
提出基于层级实现记忆( HTM)网络的地图创建方法。该方法利用层级实时记忆将制图问题等效为场景识别问题,环境地图由一系列HTM模型输出的场景构成。首先从获取图像中提取位置不变鲁棒特征( PIRF)。并利用PIRF构建视觉词汇表,根据词汇表将图像的PIRF描述符映射为视觉单词频率矢量。多个视觉单词频率矢量构成的序列输入HTM网络,用于实现环境地图的学习与创建及环路场景的推断识别。采用两组实验数据验证文中方法,结果表明基于HTM的制图策略能成功建立环境地图,并能高效处理环路检测问题。
提齣基于層級實現記憶( HTM)網絡的地圖創建方法。該方法利用層級實時記憶將製圖問題等效為場景識彆問題,環境地圖由一繫列HTM模型輸齣的場景構成。首先從穫取圖像中提取位置不變魯棒特徵( PIRF)。併利用PIRF構建視覺詞彙錶,根據詞彙錶將圖像的PIRF描述符映射為視覺單詞頻率矢量。多箇視覺單詞頻率矢量構成的序列輸入HTM網絡,用于實現環境地圖的學習與創建及環路場景的推斷識彆。採用兩組實驗數據驗證文中方法,結果錶明基于HTM的製圖策略能成功建立環境地圖,併能高效處理環路檢測問題。
제출기우층급실현기억( HTM)망락적지도창건방법。해방법이용층급실시기억장제도문제등효위장경식별문제,배경지도유일계렬HTM모형수출적장경구성。수선종획취도상중제취위치불변로봉특정( PIRF)。병이용PIRF구건시각사회표,근거사회표장도상적PIRF묘술부영사위시각단사빈솔시량。다개시각단사빈솔시량구성적서렬수입HTM망락,용우실현배경지도적학습여창건급배로장경적추단식별。채용량조실험수거험증문중방법,결과표명기우HTM적제도책략능성공건립배경지도,병능고효처리배로검측문제。
A map building method based on hierarchical temporal memory ( HTM) is proposed. The mapping problem is treated as scene recognition. The map is composed of a series of scenes being the outputs of HTM network. Firstly, the position invariant robust feature ( PIRF) is extracted from the obtained images and then the PIRFs are applied to build the visual vocabulary. Secondly, according to the visual vocabulary PIRF descriptors of an image are projected to the vector of visual word occurrences. Multiple visual word occurrences vectors are formed as a sequence of visual word occurrences. This sequence is inputted to HTM to implement the environment map learning and building and closed loop scenes recognition. The performance of the proposed mapping method is evaluated by two experiments. The results show that the proposed strategy based on HTM is effective for map building and closed loop detection.