电脑知识与技术
電腦知識與技術
전뇌지식여기술
COMPUTER KNOWLEDGE AND TECHNOLOGY
2015年
8期
20-22
,共3页
就业网站%个性化就业推荐系统%协同过滤推荐算法%算法改进
就業網站%箇性化就業推薦繫統%協同過濾推薦算法%算法改進
취업망참%개성화취업추천계통%협동과려추천산법%산법개진
employment website%personalized employment recommender system%collaborative filtering recommendation Algo-rithm%the improved algorithm
传统的就业网站主要是为就业用户提供就业信息的一个空间而已,形式单一、查询功能很简单,对于就业用户群体没有作相应的区分,针对不同的就业用户没有提供相异的服务,因此无法因人而异地满足各类就业用户的个性化需求。由此,很有必要通过数据挖掘等相关技术提出个性化就业推荐系统,如协同过滤推荐算法是目前运用最广泛也是最成功的一种,主要包括User-based和Item-based推荐算法。然而传统的协同过滤推荐算法存在稀疏性等显著问题,必须通过算法改进从而提高推荐质量。
傳統的就業網站主要是為就業用戶提供就業信息的一箇空間而已,形式單一、查詢功能很簡單,對于就業用戶群體沒有作相應的區分,針對不同的就業用戶沒有提供相異的服務,因此無法因人而異地滿足各類就業用戶的箇性化需求。由此,很有必要通過數據挖掘等相關技術提齣箇性化就業推薦繫統,如協同過濾推薦算法是目前運用最廣汎也是最成功的一種,主要包括User-based和Item-based推薦算法。然而傳統的協同過濾推薦算法存在稀疏性等顯著問題,必鬚通過算法改進從而提高推薦質量。
전통적취업망참주요시위취업용호제공취업신식적일개공간이이,형식단일、사순공능흔간단,대우취업용호군체몰유작상응적구분,침대불동적취업용호몰유제공상이적복무,인차무법인인이이지만족각류취업용호적개성화수구。유차,흔유필요통과수거알굴등상관기술제출개성화취업추천계통,여협동과려추천산법시목전운용최엄범야시최성공적일충,주요포괄User-based화Item-based추천산법。연이전통적협동과려추천산법존재희소성등현저문제,필수통과산법개진종이제고추천질량。
The traditional job site is mainly a space to provide employment information for employment user only, the form is sin?gle, the query function is very simple, for the employment of user groups did not make the distinction, in view of the different em?ployment users do not provide different services, and therefore cannot be varies from person to person to meet the personalized needs of users all kinds of employment.Therefore, it is necessary to make personalized employment recommendation sys?tem through the data mining. Recently, The most popular and successful one is Collaborative Filtering, including User-based and Item-based recommendation arithmetic. However, the traditional collaborative filtering recommendation algorithm sparseness and other significant problems exist,must by improving the algorithm so as to improve the recommend quality.