模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2015年
4期
369-376
,共8页
多智能体决策%Nash-Q学习%情绪决策%博弈理论
多智能體決策%Nash-Q學習%情緒決策%博弈理論
다지능체결책%Nash-Q학습%정서결책%박혁이론
Multi-agent Decision-Making%Nash-Q Learning%Emotion Decision-Making%Game Theory
建立一种基于情绪的Nash-Q决策模型,它由认知层和情绪层组成。认知层模型由Nash-Q算法实现,情绪层建立在情绪记忆和评价理论之上,由高兴、伤心、恐惧、厌烦组成情绪空间,建立相应刺激与情绪映射模型、情绪与行为动作映射模型、每种情绪下的动作信任度评价模型。将文中模型应用到两智能体网格决策实验中,结果表明情绪层的引入可加快收敛速度,同时能有效防止陷入局部最优,更好兼顾在线学习的“保守”和“探索”平衡。
建立一種基于情緒的Nash-Q決策模型,它由認知層和情緒層組成。認知層模型由Nash-Q算法實現,情緒層建立在情緒記憶和評價理論之上,由高興、傷心、恐懼、厭煩組成情緒空間,建立相應刺激與情緒映射模型、情緒與行為動作映射模型、每種情緒下的動作信任度評價模型。將文中模型應用到兩智能體網格決策實驗中,結果錶明情緒層的引入可加快收斂速度,同時能有效防止陷入跼部最優,更好兼顧在線學習的“保守”和“探索”平衡。
건립일충기우정서적Nash-Q결책모형,타유인지층화정서층조성。인지층모형유Nash-Q산법실현,정서층건립재정서기억화평개이론지상,유고흥、상심、공구、염번조성정서공간,건립상응자격여정서영사모형、정서여행위동작영사모형、매충정서하적동작신임도평개모형。장문중모형응용도량지능체망격결책실험중,결과표명정서층적인입가가쾌수렴속도,동시능유효방지함입국부최우,경호겸고재선학습적“보수”화“탐색”평형。
An emotion decision-making model consisting of cognition layer and emotion layer is constructed, the cognition layer is implemented in the Nash-Q algorithm, and the emotion layer is based on the theory of emotion memory and evaluation. The emotion space includes happiness, sadness, fear, boredom. The stimulus-to-emotion mapping model, emotion-to-action mapping model and the evaluation model of action credibility for each emotion are built respectively. The proposed model is applied to two-agent grid decision-making experiment. The results show that the convergence speed is higher when the Nash-Q algorithm is combined with emotional layer, and the model can effectively avoid local optimum. The model keeps better balance between conservation and searching in online learning.