电脑知识与技术
電腦知識與技術
전뇌지식여기술
COMPUTER KNOWLEDGE AND TECHNOLOGY
2015年
8期
190-191,196
,共3页
杨蕊%陈华%张艺丹
楊蕊%陳華%張藝丹
양예%진화%장예단
微粒群算法%全局最优解%Benchmarks函数
微粒群算法%全跼最優解%Benchmarks函數
미립군산법%전국최우해%Benchmarks함수
particle swarm optimization algorithm%global optimal solution%Benchmarks functions
针对标准微粒群易于收敛于局部最优解的问题,提出了一种通过添加粒子群搜索历史信息的改进微粒群算法。标准粒子群算法没有用到粒子群以往的迭代信息,再加上粒子群算法的快速收敛性,造成了算法易于收敛到局部最优解。改进的算法在运行时可以增加算法搜索空间,使算法更加平稳的收敛于全局最优解。通过用典型的Benchmarks函数进行模拟试验,实验结果证实了所提出的算法更加平稳,收敛速度更快。
針對標準微粒群易于收斂于跼部最優解的問題,提齣瞭一種通過添加粒子群搜索歷史信息的改進微粒群算法。標準粒子群算法沒有用到粒子群以往的迭代信息,再加上粒子群算法的快速收斂性,造成瞭算法易于收斂到跼部最優解。改進的算法在運行時可以增加算法搜索空間,使算法更加平穩的收斂于全跼最優解。通過用典型的Benchmarks函數進行模擬試驗,實驗結果證實瞭所提齣的算法更加平穩,收斂速度更快。
침대표준미립군역우수렴우국부최우해적문제,제출료일충통과첨가입자군수색역사신식적개진미립군산법。표준입자군산법몰유용도입자군이왕적질대신식,재가상입자군산법적쾌속수렴성,조성료산법역우수렴도국부최우해。개진적산법재운행시가이증가산법수색공간,사산법경가평은적수렴우전국최우해。통과용전형적Benchmarks함수진행모의시험,실험결과증실료소제출적산법경가평은,수렴속도경쾌。
The standard particle swarm optimization algorithm is easily converging to the local optimal solution. The algorithm above seldom contains the historical information of particle swarm search path, adding the fast convergence of this algorithm, they make this optimization converging to the local optimal solution too fast. So an improved particle swarm optimization by adding the historical information of particle swarm search is presented, which adds the algorithm search space to make the algorithm converg?ing to global optimal solution steadily during the running time. Several classic Benchmarks functions are tested and the results show that the rate of convergence is faster and the algorithm is more stable.