工程地质学报
工程地質學報
공정지질학보
2015年
2期
260-264
,共5页
非均匀地基%一维固结%解析解%分离变量法%转换关系
非均勻地基%一維固結%解析解%分離變量法%轉換關繫
비균균지기%일유고결%해석해%분리변량법%전환관계
Non-homogeneous foundation%One-dimensional consolidation%Analytical solution%Separation of variables%Transformation relationship
基于一维固结理论,研究了土层物理力学性质沿深度非均匀连续变化的固结问题。首先,利用分离变量法,获得了渗透系数和压缩系数随深度按指数函数变化的非均匀地基一维固结方程的解析表达式;然后与Terzaghi固结理论的经典解答进行了比较,获得了两种解答之间的相似转换关系。这样,非均匀地基固结问题就可以用相同荷载以及边界条件下的均匀地基固结的经典解线性表示。因此,非均匀地基固结问题的求解转化为对相似转换系数的计算。该系数集中反映土层非均匀性对地基固结的影响,从而为解决非均匀地基一维固结问题提供了便捷途径。
基于一維固結理論,研究瞭土層物理力學性質沿深度非均勻連續變化的固結問題。首先,利用分離變量法,穫得瞭滲透繫數和壓縮繫數隨深度按指數函數變化的非均勻地基一維固結方程的解析錶達式;然後與Terzaghi固結理論的經典解答進行瞭比較,穫得瞭兩種解答之間的相似轉換關繫。這樣,非均勻地基固結問題就可以用相同荷載以及邊界條件下的均勻地基固結的經典解線性錶示。因此,非均勻地基固結問題的求解轉化為對相似轉換繫數的計算。該繫數集中反映土層非均勻性對地基固結的影響,從而為解決非均勻地基一維固結問題提供瞭便捷途徑。
기우일유고결이론,연구료토층물리역학성질연심도비균균련속변화적고결문제。수선,이용분리변량법,획득료삼투계수화압축계수수심도안지수함수변화적비균균지기일유고결방정적해석표체식;연후여Terzaghi고결이론적경전해답진행료비교,획득료량충해답지간적상사전환관계。저양,비균균지기고결문제취가이용상동하재이급변계조건하적균균지기고결적경전해선성표시。인차,비균균지기고결문제적구해전화위대상사전환계수적계산。해계수집중반영토층비균균성대지기고결적영향,종이위해결비균균지기일유고결문제제공료편첩도경。
Based on the one-dimensional consolidation theory,this paper examines the consolidation problem for the saturated non-homogeneous foundation whose physical and mechanical properties are variation along the depth. Firstly,the analytical solutions to the governing equation of a saturated soil layer is obtained using the method of separation of variables.The laws of soil permeability and compressibility coefficients with depth can be expressed as exponential functions.In addition,the analogous transformation relationships between two solutions of excess pore pressure and degree of consolidation are given through comparison of the present solution with the classical solutions of Terzaghi consolidation theory.The consolidation of non-homogenous foundation can be expressed by that of homogenous foundation with the same loading and boundary conditions.Consequently, the non-homogeneous foundation consolidation problem can be reduced to the calculation of the transition parameters and the factor concentrically reflecting the effects of non-homogeneous on consolidation.This method can provide a simple and convenient approach in analyzing and solving the non-homogeneous foundation consolidation.