化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
5期
1704-1709
,共6页
姜桂林%张承武%管宁%邱德来%刘志刚
薑桂林%張承武%管寧%邱德來%劉誌剛
강계림%장승무%관저%구덕래%류지강
微通道%疏水性微柱群%流动%接触角%摩擦因子%减阻率%数值分析
微通道%疏水性微柱群%流動%接觸角%摩抆因子%減阻率%數值分析
미통도%소수성미주군%류동%접촉각%마찰인자%감조솔%수치분석
microchannels%hydrophobic micro cylinders group%flow%contact angle%friction factor%drag reduction rate%numerical analysis
采用向改性有机硅稀溶液中加入2%全氟辛基氟硅烷以及微纳米粒子的方法制备疏水液,通过改变微纳米粒子添加量调控疏水液固化成涂层后的表观接触角,紫铜叉排排列微柱群表面经不同疏水液处理后接触角分别为99.5°、119.5°和151.5°(水为工质),并测试流道内流动阻力和压力降。实验结果表明,相同Reynolds数(Re)下流道内摩擦因子(f )比疏水处理前有明显下降,主要是由于疏水性界面的张力作用所致;相同Re下,接触角越大,疏水涂层双重结构中微纳米凸起间距越小,去离子水与空气接触面增大,使得摩擦因子减小;随Re增加,3种涂层实验段内的减阻率均不断降低。
採用嚮改性有機硅稀溶液中加入2%全氟辛基氟硅烷以及微納米粒子的方法製備疏水液,通過改變微納米粒子添加量調控疏水液固化成塗層後的錶觀接觸角,紫銅扠排排列微柱群錶麵經不同疏水液處理後接觸角分彆為99.5°、119.5°和151.5°(水為工質),併測試流道內流動阻力和壓力降。實驗結果錶明,相同Reynolds數(Re)下流道內摩抆因子(f )比疏水處理前有明顯下降,主要是由于疏水性界麵的張力作用所緻;相同Re下,接觸角越大,疏水塗層雙重結構中微納米凸起間距越小,去離子水與空氣接觸麵增大,使得摩抆因子減小;隨Re增加,3種塗層實驗段內的減阻率均不斷降低。
채용향개성유궤규희용액중가입2%전불신기불규완이급미납미입자적방법제비소수액,통과개변미납미입자첨가량조공소수액고화성도층후적표관접촉각,자동차배배렬미주군표면경불동소수액처리후접촉각분별위99.5°、119.5°화151.5°(수위공질),병측시류도내류동조력화압력강。실험결과표명,상동Reynolds수(Re)하류도내마찰인자(f )비소수처리전유명현하강,주요시유우소수성계면적장력작용소치;상동Re하,접촉각월대,소수도층쌍중결구중미납미철기간거월소,거리자수여공기접촉면증대,사득마찰인자감소;수Re증가,3충도층실험단내적감조솔균불단강저。
Hydrophobic solution was prepared by adding 2% perfluorinated octyl fluorine silane and micro-nano particles to modified silicone dilute solution. This hydrophobic solution could be solidified to obtain hydrophobic surfaces, and the contact angle of water on these surfaces could be adjusted by changing the content of micro-nano particles in hydrophobic solution. Using the method above, different micro cylinders groups with contact angles of 99.5°, 119.5° and 151.5° (de-ionized water) were prepared, respectively. Using de-ionized water as working fluid, the flow resistance and pressure drops in micro cylinders groups with different contact angles were measured. The value of friction factor of test section with hydrophobic layer was apparently lower than that without the layer at the same Reynolds number, and this was because the surface tension on hydrophobic interaction interface led to a reduction of friction resistance. The larger the contact angle, the smaller the distance between the micro/nano bumps on the double structure of hydrophobic layer at the sameRe, meanwhile the ratio of liquid-air contact area to the total flow area became higher, thus flow resistance decreased. The drag reduction rates attributed to the three kinds of hydrophobic coatings on surfaces of micro pin fins decreased continuously with the increase ofRe.