化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
5期
1904-1911
,共8页
刘军%张冲%杨鲁伟%张振涛%李博%乌云
劉軍%張遲%楊魯偉%張振濤%李博%烏雲
류군%장충%양로위%장진도%리박%오운
夹套%MVR%热泵%蒸发%浓缩%分离%传热
夾套%MVR%熱泵%蒸髮%濃縮%分離%傳熱
협투%MVR%열빙%증발%농축%분리%전열
jacket%MVR%heat pump%evaporation%concentration%separation%heat transfer
为解决具有高黏度、易结垢、强腐蚀性等特点的热敏性物料的蒸发浓缩,设计了夹套式 MVR(机械蒸汽再压缩)热泵蒸发浓缩系统,并以水为实验介质进行了相关的实验研究。实验结果表明,温差、压缩比、蒸发量、传热系数、COP(制热性能系数)、SMER(单位能耗蒸发量)、绝热效率、容积效率等各项指标均受蒸发压力、压缩机频率、换热面积的影响;压缩机在频率50 Hz下运转时的系统性能大大优于低频率运转;单台蒸发釜在蒸发压力为65~85 kPa之间运行较为合适,且不需要补热;两台蒸发釜完全可以同时应用于工业蒸发浓缩过程,但需要少量的补热;两者节能效果均十分显著。
為解決具有高黏度、易結垢、彊腐蝕性等特點的熱敏性物料的蒸髮濃縮,設計瞭夾套式 MVR(機械蒸汽再壓縮)熱泵蒸髮濃縮繫統,併以水為實驗介質進行瞭相關的實驗研究。實驗結果錶明,溫差、壓縮比、蒸髮量、傳熱繫數、COP(製熱性能繫數)、SMER(單位能耗蒸髮量)、絕熱效率、容積效率等各項指標均受蒸髮壓力、壓縮機頻率、換熱麵積的影響;壓縮機在頻率50 Hz下運轉時的繫統性能大大優于低頻率運轉;單檯蒸髮釜在蒸髮壓力為65~85 kPa之間運行較為閤適,且不需要補熱;兩檯蒸髮釜完全可以同時應用于工業蒸髮濃縮過程,但需要少量的補熱;兩者節能效果均十分顯著。
위해결구유고점도、역결구、강부식성등특점적열민성물료적증발농축,설계료협투식 MVR(궤계증기재압축)열빙증발농축계통,병이수위실험개질진행료상관적실험연구。실험결과표명,온차、압축비、증발량、전열계수、COP(제열성능계수)、SMER(단위능모증발량)、절열효솔、용적효솔등각항지표균수증발압력、압축궤빈솔、환열면적적영향;압축궤재빈솔50 Hz하운전시적계통성능대대우우저빈솔운전;단태증발부재증발압력위65~85 kPa지간운행교위합괄,차불수요보열;량태증발부완전가이동시응용우공업증발농축과정,단수요소량적보열;량자절능효과균십분현저。
In order to evaporate and concentrate the thermo-sensitive materials with properties of high viscosity, easy scaling and strong corrosion, a jacketed MVR (Mechanical Vapor Recompression) heat pump evaporation concentration system was designed. Water was used as the test medium for a series of experimental studies. Such parameters as temperature difference, compression ratio, evaporation capacity, coefficient of heat transfer, COP (Coefficient of Performance), SMER (Specific Moisture Extraction Rate), adiabatic efficiency and volumetric efficiency were influenced by operational and structural parameters like evaporating pressure, frequency of compressor and heat transfer area. The performance of the system when the compressor was running at afrequency of 50 Hz was much better than that under other conditions at a lower frequency. The most appropriate range of evaporating pressure was from 65 kPa to 85 kPa when a single evaporating kettle was running, and it was unnecessary to supplement external steam. Two evaporating kettles could be simultaneously used for industrial evaporation concentration by supplementing only a small quantity of external steam. Energy saving of both cases mentioned above was significant.