化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
5期
1947-1954
,共8页
李宗云%许妍霞%汪瑾%宋兴福%于建国
李宗雲%許妍霞%汪瑾%宋興福%于建國
리종운%허연하%왕근%송흥복%우건국
硫酸法钛白%酸解尾渣%废物处理%分离%回收%工艺矿物学特性
硫痠法鈦白%痠解尾渣%廢物處理%分離%迴收%工藝礦物學特性
류산법태백%산해미사%폐물처리%분리%회수%공예광물학특성
sulfate process of titanium dioxide%residue of ilmenite by acid hydrolysis%waste treatment%separation%recovery%mineralogical properties
采用激光粒度仪、XRD、XRF、ICP-AES、SEM-EDS、比重法、筛分法等对硫酸法钛白生产过程中酸解尾渣进行系统的工艺矿物学特性分析,旨在为回收钛资源提供理论指导。研究表明,酸解尾渣表面潮湿,液相约占45%,其中易水解的可溶钛为4.06%(以TiO2质量分数计);固相中不溶TiO2干基含量为17.14%,固相颗粒粒径主要分布于1~100μm,密度为3.21 g·cm?3,颗粒大小、形状不一,有块状、锥状及团聚絮状。通过筛分实验得知钛矿与其他杂质颗粒的粒径、密度有明显差异,少量120μm以上颗粒含有石膏,密度约3.41 g·cm?3;18~75μm主要为钛铁矿,密度大于3.54 g·cm?3,钛品位可达26%;18μm以下颗粒主要为硅泥,密度约2.90 g·cm?3,易团聚,与水形成黏稠物,难分离。
採用激光粒度儀、XRD、XRF、ICP-AES、SEM-EDS、比重法、篩分法等對硫痠法鈦白生產過程中痠解尾渣進行繫統的工藝礦物學特性分析,旨在為迴收鈦資源提供理論指導。研究錶明,痠解尾渣錶麵潮濕,液相約佔45%,其中易水解的可溶鈦為4.06%(以TiO2質量分數計);固相中不溶TiO2榦基含量為17.14%,固相顆粒粒徑主要分佈于1~100μm,密度為3.21 g·cm?3,顆粒大小、形狀不一,有塊狀、錐狀及糰聚絮狀。通過篩分實驗得知鈦礦與其他雜質顆粒的粒徑、密度有明顯差異,少量120μm以上顆粒含有石膏,密度約3.41 g·cm?3;18~75μm主要為鈦鐵礦,密度大于3.54 g·cm?3,鈦品位可達26%;18μm以下顆粒主要為硅泥,密度約2.90 g·cm?3,易糰聚,與水形成黏稠物,難分離。
채용격광립도의、XRD、XRF、ICP-AES、SEM-EDS、비중법、사분법등대류산법태백생산과정중산해미사진행계통적공예광물학특성분석,지재위회수태자원제공이론지도。연구표명,산해미사표면조습,액상약점45%,기중역수해적가용태위4.06%(이TiO2질량분수계);고상중불용TiO2간기함량위17.14%,고상과립립경주요분포우1~100μm,밀도위3.21 g·cm?3,과립대소、형상불일,유괴상、추상급단취서상。통과사분실험득지태광여기타잡질과립적립경、밀도유명현차이,소량120μm이상과립함유석고,밀도약3.41 g·cm?3;18~75μm주요위태철광,밀도대우3.54 g·cm?3,태품위가체26%;18μm이하과립주요위규니,밀도약2.90 g·cm?3,역단취,여수형성점주물,난분리。
Comprehensive process mineralogy analysis of waste residue from incomplete reaction of titanium concentrate and sulfuric acid in sulfate process of titanium dioxide industry was made with Mastersizer 2000, XRD, XRF, ICP-AES, SEM-EDS, specific gravity method and screening, to provide guidance to recycling ilmenite. The residue had wet surface with about 45%(mass) soluble substance, including 4.06%(mass)Ti ion which could be hydrolyzed easily. The insoluble particles with various appearances contained 17.14%(mass) TiO2, 10.78%(mass) Fe2O3, and 46.94%(mass) SiO2. Its particle size distribution was between 1μm and 100μm. Its density was 3.21 g·cm?3. From screening, there were different particle sizes and densities between ilmenite and other impurities. Particles above 120μm with average density about 3.4 g·cm?3were mainly anhydrite. Particles between 18μm and 75μm with average density greater than 3.5 g·cm?3 were mainly ilmenite. Particles below 18μm with average density about 2.9 g·cm?3 mainly contained silicon sludge, and became viscous and difficult to separate in water.