化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
5期
1964-1969
,共6页
聚合物%黏度%渗透率%水辅助注塑%PP/EVOH共混物%相形态
聚閤物%黏度%滲透率%水輔助註塑%PP/EVOH共混物%相形態
취합물%점도%삼투솔%수보조주소%PP/EVOH공혼물%상형태
polymers%viscosity%permeability%water-assisted injection molding%PP/EVOH blend%phase morphology
选择3种不同黏度的聚丙烯(PP)与聚乙烯醇(EVOH)共混制备质量比为90/10的共混物,并采用水辅助注塑(WAIM)将这3种共混物成型为中空制品。从WAIM制品靠近浇口(1#)和末端(2#)两个位置取出样品,通过扫描电镜观察样品壁厚上3个位置的相形态,并测试所取样品的甲苯渗透率。借助WAIM中高压水作用下模腔内熔体的流场对样品中3个位置的相形态进行了分析。对WAIM的高黏度比共混物制品2#样品,在外表层和内表层分散相呈粗纤维状,芯层主要呈液滴状,其阻渗性能与相应的WAIM PP样品比有适度提高(约2.4倍);对WAIM的2种低黏度比共混物制品2#样品,外表层和内表层分散相呈细纤维状,芯层呈粗长纤维状,其阻渗性能与相应的WAIM PP样品比提高幅度较大(其中对黏度比最小的共混物达9.8倍)。1#位置所取3种WAIM PP/EVOH样品中分散相纤维的平均直径比2#位置的大,导致1#位置所取样品的阻渗性能比2#位置的低。
選擇3種不同黏度的聚丙烯(PP)與聚乙烯醇(EVOH)共混製備質量比為90/10的共混物,併採用水輔助註塑(WAIM)將這3種共混物成型為中空製品。從WAIM製品靠近澆口(1#)和末耑(2#)兩箇位置取齣樣品,通過掃描電鏡觀察樣品壁厚上3箇位置的相形態,併測試所取樣品的甲苯滲透率。藉助WAIM中高壓水作用下模腔內鎔體的流場對樣品中3箇位置的相形態進行瞭分析。對WAIM的高黏度比共混物製品2#樣品,在外錶層和內錶層分散相呈粗纖維狀,芯層主要呈液滴狀,其阻滲性能與相應的WAIM PP樣品比有適度提高(約2.4倍);對WAIM的2種低黏度比共混物製品2#樣品,外錶層和內錶層分散相呈細纖維狀,芯層呈粗長纖維狀,其阻滲性能與相應的WAIM PP樣品比提高幅度較大(其中對黏度比最小的共混物達9.8倍)。1#位置所取3種WAIM PP/EVOH樣品中分散相纖維的平均直徑比2#位置的大,導緻1#位置所取樣品的阻滲性能比2#位置的低。
선택3충불동점도적취병희(PP)여취을희순(EVOH)공혼제비질량비위90/10적공혼물,병채용수보조주소(WAIM)장저3충공혼물성형위중공제품。종WAIM제품고근요구(1#)화말단(2#)량개위치취출양품,통과소묘전경관찰양품벽후상3개위치적상형태,병측시소취양품적갑분삼투솔。차조WAIM중고압수작용하모강내용체적류장대양품중3개위치적상형태진행료분석。대WAIM적고점도비공혼물제품2#양품,재외표층화내표층분산상정조섬유상,심층주요정액적상,기조삼성능여상응적WAIM PP양품비유괄도제고(약2.4배);대WAIM적2충저점도비공혼물제품2#양품,외표층화내표층분산상정세섬유상,심층정조장섬유상,기조삼성능여상응적WAIM PP양품비제고폭도교대(기중대점도비최소적공혼물체9.8배)。1#위치소취3충WAIM PP/EVOH양품중분산상섬유적평균직경비2#위치적대,도치1#위치소취양품적조삼성능비2#위치적저。
Three kinds of polypropylene (PP) with different viscosities were blended with poly(vinyl alcohol) (EVOH) to prepare 90/10 PP/EVOH blends, and the blends were then molded into hollow partsvia water-assisted injection molding (WAIM). Samples were cut from locations near the gate (marked as 1#) and the end of flow channel (marked as 2#) of the WAIM blend parts, and the phase morphologies at three regions across the residual wall of the samples were observed with scanning electron microscope. The toluene permeabilities of the samples cut from the WAIM blend parts were measured. The phase morphologies at the three regions in the samples were interpreted with the aid of flow fields within the mold cavity under high-pressure water penetration during WAIM. Coarse fibers appeared in both outer and inner layers and droplets in the core layer for the sample taken from location 2# of the WAIM blend with high viscosity ratio, which resulted in modestly improved barrier performance of the sample compared with the WAIM corresponding PP sample (about 2.4 times). Slim fibers existed in the outer and inner layers and coarse and long fibers in the core layer for the samples taken from location 2# of the WAIM blends with low viscosity ratios, which resulted in greatly improved barrier performance of the samples compared with the WAIM correponding PP sample (about 9.8 times for the blend with the lowest viscosity ratio). Average diameters of dispersed fibers for the samples taken from location 1# of three WAIM parts were larger than those taken from location 2#, which resulted in lower barrier performance for the former samples.