节水灌溉
節水灌溉
절수관개
WATER SAVING IRRIGATION
2015年
4期
87-91
,共5页
水沙分离%Mixture模型%倾角%数值模拟
水沙分離%Mixture模型%傾角%數值模擬
수사분리%Mixture모형%경각%수치모의
water-sediment separation%mixture model%tilt angle%numerical simulation
为了研究锥圈倾角和下锥管倾角对梭锥管内水沙分离效果的影响,在数值模拟计算结果与 PIV测试结果一致基础之上,建立了5个不同锥圈倾角和7个不同下锥管倾角的梭锥管模型,采用层流方程和简化的多相流Mixture模型通过数值模拟计算了浑水含沙浓度为5 kg/m3时各个梭锥管内部的泥沙浓度和速度场,详细对比分析了不同倾角下梭锥管内的速度场和浓度分布特性。结果表明,在上锥管结构尺寸、锥圈间距不变的条件下,锥圈倾角β与下锥管倾角γ相等且等于45°时,梭锥管水沙分离效果最好,在该角度下锥圈上表面泥沙滑动至排沙通道所需要的时间最短,梭锥管水沙分离效率最高。
為瞭研究錐圈傾角和下錐管傾角對梭錐管內水沙分離效果的影響,在數值模擬計算結果與 PIV測試結果一緻基礎之上,建立瞭5箇不同錐圈傾角和7箇不同下錐管傾角的梭錐管模型,採用層流方程和簡化的多相流Mixture模型通過數值模擬計算瞭渾水含沙濃度為5 kg/m3時各箇梭錐管內部的泥沙濃度和速度場,詳細對比分析瞭不同傾角下梭錐管內的速度場和濃度分佈特性。結果錶明,在上錐管結構呎吋、錐圈間距不變的條件下,錐圈傾角β與下錐管傾角γ相等且等于45°時,梭錐管水沙分離效果最好,在該角度下錐圈上錶麵泥沙滑動至排沙通道所需要的時間最短,梭錐管水沙分離效率最高。
위료연구추권경각화하추관경각대사추관내수사분리효과적영향,재수치모의계산결과여 PIV측시결과일치기출지상,건립료5개불동추권경각화7개불동하추관경각적사추관모형,채용층류방정화간화적다상류Mixture모형통과수치모의계산료혼수함사농도위5 kg/m3시각개사추관내부적니사농도화속도장,상세대비분석료불동경각하사추관내적속도장화농도분포특성。결과표명,재상추관결구척촌、추권간거불변적조건하,추권경각β여하추관경각γ상등차등우45°시,사추관수사분리효과최호,재해각도하추권상표면니사활동지배사통도소수요적시간최단,사추관수사분리효솔최고。
In order to study the effects of the tilt angle of conical circles and the lower cone angle of inclination on the water-sediment separating in Shuttle-conical tube ,based on the consistency of the numerical simulation result with the PIV test results ,five different cone angles and seven different circles under the cone of shuttle-conical tube were established ,sediment concentration and velocity field were calculated through numerical simulation under the condition that the silt content concentration of muddy water was 5 kg/m3 ,and the characteristics of velocity field and the concentration distribution were compared and analyzed in detail under different angles .The results showed that under the condition that the cone structure size and the cone ring spacing are the same ,β= γ=45° is the best angle for the separation of water and sediment .Under this angle ,the time needed for the sediment on the cone ring surface sliding to the flushing channel is the shortest ,and the water and sediment separation efficiency is the highest in shuttle-conical tube .