深空探测学报
深空探測學報
심공탐측학보
Journal of Deep Space Exploration
2014年
4期
275-281
,共7页
范双菲%赵方方%李夏菁%唐忠樑%贺威
範雙菲%趙方方%李夏菁%唐忠樑%賀威
범쌍비%조방방%리하정%당충량%하위
多模型自适应估计%卡尔曼滤波%捷联惯导%天文导航%组合导航
多模型自適應估計%卡爾曼濾波%捷聯慣導%天文導航%組閤導航
다모형자괄응고계%잡이만려파%첩련관도%천문도항%조합도항
multiple model adaptive estimation%Kalman filter%strap-down inertial navigation%celestial navigation%integrated navigation
针对单一模型滤波器在未知或不确定的系统参数下适应性较差的问题,提出了一种新的基于多模型自适应估计(multiple model adaptive estimation,MMAE)的滤波方法。该方法利用改进的卡尔曼滤波代替传统的卡尔曼滤波,比如扩展卡尔曼滤波(extended Kalman filter,EKF)和无迹卡尔曼滤波(unscented Kalman filter, UKF)。EKF 和 UKF 被用来作为多模型自适应估计的子滤波器,从而实现对非线性系统的状态估计。同时,还将该方法应用于基于弹道导弹模型的组合导航中实现了系统仿真。仿真结果表明,与传统的 EKF 和 UKF 算法比较,改进的滤波方法可以解决传统模型滤波器适应性差的问题,并提高系统的导航精度。
針對單一模型濾波器在未知或不確定的繫統參數下適應性較差的問題,提齣瞭一種新的基于多模型自適應估計(multiple model adaptive estimation,MMAE)的濾波方法。該方法利用改進的卡爾曼濾波代替傳統的卡爾曼濾波,比如擴展卡爾曼濾波(extended Kalman filter,EKF)和無跡卡爾曼濾波(unscented Kalman filter, UKF)。EKF 和 UKF 被用來作為多模型自適應估計的子濾波器,從而實現對非線性繫統的狀態估計。同時,還將該方法應用于基于彈道導彈模型的組閤導航中實現瞭繫統倣真。倣真結果錶明,與傳統的 EKF 和 UKF 算法比較,改進的濾波方法可以解決傳統模型濾波器適應性差的問題,併提高繫統的導航精度。
침대단일모형려파기재미지혹불학정적계통삼수하괄응성교차적문제,제출료일충신적기우다모형자괄응고계(multiple model adaptive estimation,MMAE)적려파방법。해방법이용개진적잡이만려파대체전통적잡이만려파,비여확전잡이만려파(extended Kalman filter,EKF)화무적잡이만려파(unscented Kalman filter, UKF)。EKF 화 UKF 피용래작위다모형자괄응고계적자려파기,종이실현대비선성계통적상태고계。동시,환장해방법응용우기우탄도도탄모형적조합도항중실현료계통방진。방진결과표명,여전통적 EKF 화 UKF 산법비교,개진적려파방법가이해결전통모형려파기괄응성차적문제,병제고계통적도항정도。
In this paper,a new filtering method based on multiple model adaptive estimation(MMAE)algorithm is proposed,for the problem of poor adaptability of single model filters with unknown or uncertain parameters.In this proposed algorithm,we use improved Kalman filters rather than traditional Kalman filters,such as extended Kalman filter (EKF),unscented Kalman filter (UKF).And EKF and UKF are used as sub filters in MMAE algorithm to realize the state estimation of nonlinear system.Meanwhile,this method is applied to the SINS/CNS integrated navigation system under the motion of ballistic missile.As the simulation result shows,the improved filtering methods have better navigation accuracy,and can solve the problem of poor adaptability of single model filter,when compared with traditional EKF and UKF algorithms.