太原科技大学学报
太原科技大學學報
태원과기대학학보
JOURNAL OF TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
2015年
2期
81-86
,共6页
刘广强%卢焕达%余心杰%舒振宇
劉廣彊%盧煥達%餘心傑%舒振宇
류엄강%로환체%여심걸%서진우
图像处理%特征提取%压缩感知%稀疏表示%葡萄干分类
圖像處理%特徵提取%壓縮感知%稀疏錶示%葡萄榦分類
도상처리%특정제취%압축감지%희소표시%포도간분류
image processing%feature extraction%compressed sensing%sparse representation%raisin classification
为实现机器视觉准确判别葡萄干品种,提出了一种基于压缩感知理论( Compressed Sensing, CS)的葡萄干品种分类方法。以3种葡萄干为研究对象,并提取葡萄干图像的形态、颜色和纹理特征参数,得到葡萄干训练样本的数据词典矩阵。压缩感知理论分类算法首先利用由葡萄干图像特征参数组成的数据词典矩阵对每一个葡萄干测试样本进行稀疏性表示,得到稀疏向量。然后利用稀疏向量对葡萄干测试样本进行重构,并计算重构样本与测试样本之间的残差,最后通过比较残差的大小来确定测试样本的类别。将提出的方法与最小二乘法支持向量机( Least squares support vector machine,LSSvM)和BP( Back Propagation)网络的识别结果做了对比和分析。试验结果表明,基于压缩感知理论的分类方法对于3个葡萄干品种的综合分类准确率为99.17%,获得了最好的分类效果。
為實現機器視覺準確判彆葡萄榦品種,提齣瞭一種基于壓縮感知理論( Compressed Sensing, CS)的葡萄榦品種分類方法。以3種葡萄榦為研究對象,併提取葡萄榦圖像的形態、顏色和紋理特徵參數,得到葡萄榦訓練樣本的數據詞典矩陣。壓縮感知理論分類算法首先利用由葡萄榦圖像特徵參數組成的數據詞典矩陣對每一箇葡萄榦測試樣本進行稀疏性錶示,得到稀疏嚮量。然後利用稀疏嚮量對葡萄榦測試樣本進行重構,併計算重構樣本與測試樣本之間的殘差,最後通過比較殘差的大小來確定測試樣本的類彆。將提齣的方法與最小二乘法支持嚮量機( Least squares support vector machine,LSSvM)和BP( Back Propagation)網絡的識彆結果做瞭對比和分析。試驗結果錶明,基于壓縮感知理論的分類方法對于3箇葡萄榦品種的綜閤分類準確率為99.17%,穫得瞭最好的分類效果。
위실현궤기시각준학판별포도간품충,제출료일충기우압축감지이론( Compressed Sensing, CS)적포도간품충분류방법。이3충포도간위연구대상,병제취포도간도상적형태、안색화문리특정삼수,득도포도간훈련양본적수거사전구진。압축감지이론분류산법수선이용유포도간도상특정삼수조성적수거사전구진대매일개포도간측시양본진행희소성표시,득도희소향량。연후이용희소향량대포도간측시양본진행중구,병계산중구양본여측시양본지간적잔차,최후통과비교잔차적대소래학정측시양본적유별。장제출적방법여최소이승법지지향량궤( Least squares support vector machine,LSSvM)화BP( Back Propagation)망락적식별결과주료대비화분석。시험결과표명,기우압축감지이론적분류방법대우3개포도간품충적종합분류준학솔위99.17%,획득료최호적분류효과。
A classification method based on Compressed Sensing was proposed for discriminating the varieties of Raisin precisely. Three kinds of Raisins were investigated,and the shape,color and texture feature parameters of the Raisins image were extracted,and then,the data dictionary matrix was got. Firstly,this classification process was to represent the test samples of Raisins image by the matrix of data dictionary and to obtain the sparse vector. Second-ly,the residuals were calculated between the reconstructed samples and the test samples by making use of the sparse vector to reconstruct the test samples of Raisins image. Finally,the classification of test samples were deter-mined by comparing the sizes of residuals. In this study,the classification results on the proposed method were ana-lyzed and compared with those of Least Squares Support vector Machine( LSSvM)and BP network. Experimental results demonstrated that the overall classification accuracy of Compressed Sensing method is 99 . 17%,which has the best classification effect among three methods.