机器人
機器人
궤기인
ROBOT
2015年
2期
168-175,187
,共9页
樊继壮%仇裕龙%张伟%王欢
樊繼壯%仇裕龍%張偉%王歡
번계장%구유룡%장위%왕환
仿蛙机器人%机构设计%运动学%气动肌肉%动力学仿真%样机实验
倣蛙機器人%機構設計%運動學%氣動肌肉%動力學倣真%樣機實驗
방와궤기인%궤구설계%운동학%기동기육%동역학방진%양궤실험
robotic frog%mechanical design%kinematics%pneumatic muscle%dynamics simulation%prototype experiment
为研制仿青蛙游动机器人,设计了游动机器人机构.首先通过分析生物青蛙结构,设计仿青蛙机器人的原理样机.选择气动肌肉作为驱动器,分别驱动髋、膝、踝关节的转动,并采用钢丝传动结构,将膝关节气动肌肉安装在躯干上,从而有效减小了腿部的质量.建立了机器人系统的运动学模型并进行机器人运动学分析.分析了青蛙游动过程中的水下受力,并将水的作用力引入ADAMS仿真环境中,模拟了青蛙游动中的水环境,从而进行动力学仿真分析.最后对所研制出的仿青蛙游动机器人进行水下游动实验,其推进阶段平均速度达到339 mm/s.通过对比分析发现在动力学仿真和样机实验两种不同方法下机器人后肢运动形式基本一致,从而验证了仿青蛙游动机器人原理样机设计的可行性.
為研製倣青蛙遊動機器人,設計瞭遊動機器人機構.首先通過分析生物青蛙結構,設計倣青蛙機器人的原理樣機.選擇氣動肌肉作為驅動器,分彆驅動髖、膝、踝關節的轉動,併採用鋼絲傳動結構,將膝關節氣動肌肉安裝在軀榦上,從而有效減小瞭腿部的質量.建立瞭機器人繫統的運動學模型併進行機器人運動學分析.分析瞭青蛙遊動過程中的水下受力,併將水的作用力引入ADAMS倣真環境中,模擬瞭青蛙遊動中的水環境,從而進行動力學倣真分析.最後對所研製齣的倣青蛙遊動機器人進行水下遊動實驗,其推進階段平均速度達到339 mm/s.通過對比分析髮現在動力學倣真和樣機實驗兩種不同方法下機器人後肢運動形式基本一緻,從而驗證瞭倣青蛙遊動機器人原理樣機設計的可行性.
위연제방청와유동궤기인,설계료유동궤기인궤구.수선통과분석생물청와결구,설계방청와궤기인적원리양궤.선택기동기육작위구동기,분별구동관、슬、과관절적전동,병채용강사전동결구,장슬관절기동기육안장재구간상,종이유효감소료퇴부적질량.건립료궤기인계통적운동학모형병진행궤기인운동학분석.분석료청와유동과정중적수하수력,병장수적작용력인입ADAMS방진배경중,모의료청와유동중적수배경,종이진행동역학방진분석.최후대소연제출적방청와유동궤기인진행수하유동실험,기추진계단평균속도체도339 mm/s.통과대비분석발현재동역학방진화양궤실험량충불동방법하궤기인후지운동형식기본일치,종이험증료방청와유동궤기인원리양궤설계적가행성.
A swimming mechanism for frog inspired robot is designed. Firstly, the prototype of the frog inspired robot is designed through analyzing the biological structure of real frogs. Pneumatic muscles are selected as the drivers to drive the rotational motions of hip, knee and ankle joints. The knee driving muscle is positioned on the body, driving the knee joint through steel wires, and therefore, the leg mass is reduced. Then the kinematics model of the robot system is established and analyzed. The forces exerted on the frog are analyzed and introduced into simulation environment in ADAMS, so the water environment is simulated and the dynamic analysis is conducted. The underwater swimming experiments of the frog swimming robot are carried out, and average velocity in propulsive phase is 339mm/s. Through the comparative analyses of the two different methods, by dynamics simulation and prototype experiments, the motion patterns of the robotic hindlimb are basically the same. Accordingly, the feasibility of the designed frog inspired swimming robot can be verified.