机器人
機器人
궤기인
ROBOT
2015年
2期
212-223
,共12页
熊中刚%叶振环%贺娟%陈连贵%令狐金卿
熊中剛%葉振環%賀娟%陳連貴%令狐金卿
웅중강%협진배%하연%진련귀%령호금경
自动导航%农业机械%双激光源定位技术%模糊控制%路径跟踪
自動導航%農業機械%雙激光源定位技術%模糊控製%路徑跟蹤
자동도항%농업궤계%쌍격광원정위기술%모호공제%로경근종
automatic guidance%agricultural machinery%dual laser source localization technology%fuzzy control%path tracking
为实现复杂环境下小型农业机械田间作业时的路径跟踪控制,提出了基于免疫模糊PID (比例-积分-微分)的智能路径跟踪控制方法.首先,路径跟踪控制被分解为自动直线导航和自动转向控制任务,并分别构建了能够实现自动导航的模糊控制器和基于免疫模糊PID控制的自动转向方法.该设计在无人驾驶高速插秧机硬件系统基础上,开发了基于双激光源定位技术、电子罗盘和角度传感器的自动导航控制系统.其次,根据自动导航控制系统构造和工作原理,提出了直线和曲线路径跟踪的方法.最后,利用Matlab/Simulink仿真平台和插秧机的运动学模型对所设计的路径跟踪控制原理和模糊控制器进行了有效性验证,同时完成了包括直线和曲线的路径跟踪试验.当插秧机以1 m/s的速度进行直线跟踪时,最大跟踪偏差只有4 cm,平均跟踪偏差为0.84 cm;当以同样的速度做曲线跟踪时,曲线路径跟踪时的最大偏差为0.6 m,平均跟踪偏差控制在12 cm以内.仿真和试验结果表明,该套控制系统能够有效地控制无人驾驶高速插秧机按预定路径行走.
為實現複雜環境下小型農業機械田間作業時的路徑跟蹤控製,提齣瞭基于免疫模糊PID (比例-積分-微分)的智能路徑跟蹤控製方法.首先,路徑跟蹤控製被分解為自動直線導航和自動轉嚮控製任務,併分彆構建瞭能夠實現自動導航的模糊控製器和基于免疫模糊PID控製的自動轉嚮方法.該設計在無人駕駛高速插秧機硬件繫統基礎上,開髮瞭基于雙激光源定位技術、電子囉盤和角度傳感器的自動導航控製繫統.其次,根據自動導航控製繫統構造和工作原理,提齣瞭直線和麯線路徑跟蹤的方法.最後,利用Matlab/Simulink倣真平檯和插秧機的運動學模型對所設計的路徑跟蹤控製原理和模糊控製器進行瞭有效性驗證,同時完成瞭包括直線和麯線的路徑跟蹤試驗.噹插秧機以1 m/s的速度進行直線跟蹤時,最大跟蹤偏差隻有4 cm,平均跟蹤偏差為0.84 cm;噹以同樣的速度做麯線跟蹤時,麯線路徑跟蹤時的最大偏差為0.6 m,平均跟蹤偏差控製在12 cm以內.倣真和試驗結果錶明,該套控製繫統能夠有效地控製無人駕駛高速插秧機按預定路徑行走.
위실현복잡배경하소형농업궤계전간작업시적로경근종공제,제출료기우면역모호PID (비례-적분-미분)적지능로경근종공제방법.수선,로경근종공제피분해위자동직선도항화자동전향공제임무,병분별구건료능구실현자동도항적모호공제기화기우면역모호PID공제적자동전향방법.해설계재무인가사고속삽앙궤경건계통기출상,개발료기우쌍격광원정위기술、전자라반화각도전감기적자동도항공제계통.기차,근거자동도항공제계통구조화공작원리,제출료직선화곡선로경근종적방법.최후,이용Matlab/Simulink방진평태화삽앙궤적운동학모형대소설계적로경근종공제원리화모호공제기진행료유효성험증,동시완성료포괄직선화곡선적로경근종시험.당삽앙궤이1 m/s적속도진행직선근종시,최대근종편차지유4 cm,평균근종편차위0.84 cm;당이동양적속도주곡선근종시,곡선로경근종시적최대편차위0.6 m,평균근종편차공제재12 cm이내.방진화시험결과표명,해투공제계통능구유효지공제무인가사고속삽앙궤안예정로경행주.
An intelligent path tracking control method is proposed based on fuzzy immune PID (proportional-integral-differential), to realize path tracking control for small agricultural machinery in complex environment. Firstly, a path tracking control task is decomposed into linear automatic navigation control task and automatic steering control task, and a fuzzy controller for automatic navigation and an automatic steering control method based on fuzzy immune PID are constructed. An automatic navigation control system is developed with dual laser source localization technology, electronic compass and angle sensor based on the hardware system of the unmanned high speed transplanter. Secondly, the straight line and the curve line path tracking methods are proposed based on the machinery construction and working principle of the automatic navigation control system. At last, the effectiveness of the path tracking control principle and fuzzy controller design is verified by using Matlab/Simulink simulation platform and the transplanter kinematics model, and the straight line and the curve line path tracking experiments are also completed. When a transplanter makes the linear tracking at 1 m/s, the maximum deviation is only 4 cm, and the average tracking error is 0.84 cm;when it makes the curve line path tracking at the same speed, the maximum deviation is 0.6 m, and the average tracking error is within 12 cm. Simulation and experiment results show that the unmanned high-speed transplanter based on this control system can effectively track the predefined path.