光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2015年
4期
1043-1047
,共5页
覃文霞%龚琦%李敏%邓立新%莫利书%李艳琳
覃文霞%龔琦%李敏%鄧立新%莫利書%李豔琳
담문하%공기%리민%산립신%막리서%리염림
砷%食品包装铝材%强酸型阳离子交换纤维%分离%ICP-AES
砷%食品包裝鋁材%彊痠型暘離子交換纖維%分離%ICP-AES
신%식품포장려재%강산형양리자교환섬유%분리%ICP-AES
Arsenic%Food packaging aluminum%Strong acid cation exchange fibers%Separation%ICP-AES
原子光谱法直接测定纯铝材中的砷,受到铝基体的干扰。实验表明,当被测试液中 Al的质量浓度大于等于A s的5000倍时,测量误差大于5%。为了降低被测试液中铝的浓度以消除干扰,利用对A l3+吸附作用强的强酸型阳离子交换纤维作为固相萃取剂,通过对萃取剂用量、萃取温度、pH值等条件的研究,得到以下方法:0.9000 g强酸型阳离子交换纤维在55℃,pH 2.0的试液中,对Al3+进行超声辅助萃取5 min ,此时以砷酸形式存在的砷不被萃取而留在试液中供测定。结果表明,10.00 mL含砷1.00μg ,铝20.0 mg的试液经过分离后,其中砷未见损失,而残留铝质量浓度约为砷的2000倍,已不干扰ICP‐AES测定As。方法检出限(3s)为0.027μg·mL -1,方法定量下限(10s)为0.091μg·mL -1。本方法已用于合成样、铝制饮料易拉罐和烘烤食品用铝箔等样品中 As的测定,标准加入的回收率98.3%~105%;RSD(n=3)0.1%~4.3%;结果显示,在本实验所测的铝易拉罐和烘烤用铝箔样品中,砷的含量均低于国家标准(G B/T 3190—2008)的限定值。
原子光譜法直接測定純鋁材中的砷,受到鋁基體的榦擾。實驗錶明,噹被測試液中 Al的質量濃度大于等于A s的5000倍時,測量誤差大于5%。為瞭降低被測試液中鋁的濃度以消除榦擾,利用對A l3+吸附作用彊的彊痠型暘離子交換纖維作為固相萃取劑,通過對萃取劑用量、萃取溫度、pH值等條件的研究,得到以下方法:0.9000 g彊痠型暘離子交換纖維在55℃,pH 2.0的試液中,對Al3+進行超聲輔助萃取5 min ,此時以砷痠形式存在的砷不被萃取而留在試液中供測定。結果錶明,10.00 mL含砷1.00μg ,鋁20.0 mg的試液經過分離後,其中砷未見損失,而殘留鋁質量濃度約為砷的2000倍,已不榦擾ICP‐AES測定As。方法檢齣限(3s)為0.027μg·mL -1,方法定量下限(10s)為0.091μg·mL -1。本方法已用于閤成樣、鋁製飲料易拉罐和烘烤食品用鋁箔等樣品中 As的測定,標準加入的迴收率98.3%~105%;RSD(n=3)0.1%~4.3%;結果顯示,在本實驗所測的鋁易拉罐和烘烤用鋁箔樣品中,砷的含量均低于國傢標準(G B/T 3190—2008)的限定值。
원자광보법직접측정순려재중적신,수도려기체적간우。실험표명,당피측시액중 Al적질량농도대우등우A s적5000배시,측량오차대우5%。위료강저피측시액중려적농도이소제간우,이용대A l3+흡부작용강적강산형양리자교환섬유작위고상췌취제,통과대췌취제용량、췌취온도、pH치등조건적연구,득도이하방법:0.9000 g강산형양리자교환섬유재55℃,pH 2.0적시액중,대Al3+진행초성보조췌취5 min ,차시이신산형식존재적신불피췌취이류재시액중공측정。결과표명,10.00 mL함신1.00μg ,려20.0 mg적시액경과분리후,기중신미견손실,이잔류려질량농도약위신적2000배,이불간우ICP‐AES측정As。방법검출한(3s)위0.027μg·mL -1,방법정량하한(10s)위0.091μg·mL -1。본방법이용우합성양、려제음료역랍관화홍고식품용려박등양품중 As적측정,표준가입적회수솔98.3%~105%;RSD(n=3)0.1%~4.3%;결과현시,재본실험소측적려역랍관화홍고용려박양품중,신적함량균저우국가표준(G B/T 3190—2008)적한정치。
Determination of arsenic in pure aluminum by inductively coupled plasma atomic emission spectrometry was interfered by aluminum matrix .The experiment showed that when the mass concentration of Al was greater than or equal to 5 000 times the As in the test solution ,the measurement error was greater than 5% .In order to eliminate the interference ,strong acid cation exchange fiber (SACEF) was used as solid phase extraction agent to adsorb Al3+ .The extraction conditions included amount of SACEF ,extraction time ,temperature and pH were investigated .The optimal extraction conditions were that 0.900 0 g SACEF was used to extract the aluminum from the sample solution of pH 2.0 at 55 ℃ for 5 min with the ultrasonic assist ,and in this case ,the arsenic in the form of arsenic acid was not extracted and left in the solution for the determination .The results showed that after treating 10 .00 mL test solution containing 1.00μg arsenic and 20.0 mg aluminum ,arsenic did not lose .The mass con‐centration of residual aluminum in the raffinate was about 2 000 times the As ,which had not interfered the determination of arse‐nic .The detection limit (3 s) was 0.027μg · mL -1 and quantification limit (10 s) was 0.091μg · mL -1 .The proposed method was successfully applied to the separation and determination of arsenic in the synthetic samples ,the aluminum cans and the bar‐becue aluminum foil .Recovery was in the range of 98.3% ~105% and RSD (n=3) was in the range of 0.1% ~4.3% .The re‐sults showed that the content of arsenic in the aluminum cans and the aluminum barbecue foil was below the limited value of na‐tional standard (GB/T 3190—2008) .