光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2015年
4期
1079-1083
,共5页
夏明%顾牡%刘小林%刘波%黄世明%倪晨
夏明%顧牡%劉小林%劉波%黃世明%倪晨
하명%고모%류소림%류파%황세명%예신
γ-CuI超快闪烁转换屏%真空热蒸发法%微柱结构%X射线激发发射光谱%空间分辨率
γ-CuI超快閃爍轉換屏%真空熱蒸髮法%微柱結構%X射線激髮髮射光譜%空間分辨率
γ-CuI초쾌섬삭전환병%진공열증발법%미주결구%X사선격발발사광보%공간분변솔
γ-CuI ultrafast scintillation conversion screen%Thermal evaporation method%Micro-columnar structure%X-ray excit-ed emission%Spatial resolution
以石英基片为衬底,采用真空热蒸发法,通过调控衬底温度制备出了具有微柱结构、柱径在μm量级、厚度约17μm的γ‐CuI超快闪烁转换屏。在X射线激发下,所制备的γ‐CuI超快转换屏具有峰位在430nm的快成分发射峰和峰位在700nm的慢成分发射带,其中快成分发射峰占总发光的主要部分;随着衬底温度由170℃升高至210℃,转换屏430nm发射峰的强度会逐渐减弱,而700nm发射带的强度则逐渐增强,这可能是由于较高的衬底温度会造成碘流失从而引起转换屏中碘空位增加、铜空位减少所致(Cu/I增大),碘流失的假设得到了卢瑟福背散射实验的验证。γ‐CuI超快转换屏的晶体结构呈(111)晶面择优取向,且不随衬底温度而变化,当衬底温度升高至210℃时,由于CuI分子获得的动能增加,转换屏还会出现微弱的(220)和(420)晶面的取向。当衬底温度由170℃增至190℃时,转换屏的微柱结构会随之优化,微柱结构明显,但当衬底温度进一步增至210℃时,由于表面扩散和体扩散效应加剧,微柱结构会随之退化。最后,采用刃边法测量了所制备γ‐CuI转换屏的空间分辨率,结果显示170,190和210℃衬底温度条件下所制备的转换屏,其空间分辨率分别为:4.5,7.2和5.6lp·mm-1,微柱结构有助于提高转换屏的空间分辨率。
以石英基片為襯底,採用真空熱蒸髮法,通過調控襯底溫度製備齣瞭具有微柱結構、柱徑在μm量級、厚度約17μm的γ‐CuI超快閃爍轉換屏。在X射線激髮下,所製備的γ‐CuI超快轉換屏具有峰位在430nm的快成分髮射峰和峰位在700nm的慢成分髮射帶,其中快成分髮射峰佔總髮光的主要部分;隨著襯底溫度由170℃升高至210℃,轉換屏430nm髮射峰的彊度會逐漸減弱,而700nm髮射帶的彊度則逐漸增彊,這可能是由于較高的襯底溫度會造成碘流失從而引起轉換屏中碘空位增加、銅空位減少所緻(Cu/I增大),碘流失的假設得到瞭盧瑟福揹散射實驗的驗證。γ‐CuI超快轉換屏的晶體結構呈(111)晶麵擇優取嚮,且不隨襯底溫度而變化,噹襯底溫度升高至210℃時,由于CuI分子穫得的動能增加,轉換屏還會齣現微弱的(220)和(420)晶麵的取嚮。噹襯底溫度由170℃增至190℃時,轉換屏的微柱結構會隨之優化,微柱結構明顯,但噹襯底溫度進一步增至210℃時,由于錶麵擴散和體擴散效應加劇,微柱結構會隨之退化。最後,採用刃邊法測量瞭所製備γ‐CuI轉換屏的空間分辨率,結果顯示170,190和210℃襯底溫度條件下所製備的轉換屏,其空間分辨率分彆為:4.5,7.2和5.6lp·mm-1,微柱結構有助于提高轉換屏的空間分辨率。
이석영기편위츤저,채용진공열증발법,통과조공츤저온도제비출료구유미주결구、주경재μm량급、후도약17μm적γ‐CuI초쾌섬삭전환병。재X사선격발하,소제비적γ‐CuI초쾌전환병구유봉위재430nm적쾌성분발사봉화봉위재700nm적만성분발사대,기중쾌성분발사봉점총발광적주요부분;수착츤저온도유170℃승고지210℃,전환병430nm발사봉적강도회축점감약,이700nm발사대적강도칙축점증강,저가능시유우교고적츤저온도회조성전류실종이인기전환병중전공위증가、동공위감소소치(Cu/I증대),전류실적가설득도료로슬복배산사실험적험증。γ‐CuI초쾌전환병적정체결구정(111)정면택우취향,차불수츤저온도이변화,당츤저온도승고지210℃시,유우CuI분자획득적동능증가,전환병환회출현미약적(220)화(420)정면적취향。당츤저온도유170℃증지190℃시,전환병적미주결구회수지우화,미주결구명현,단당츤저온도진일보증지210℃시,유우표면확산화체확산효응가극,미주결구회수지퇴화。최후,채용인변법측량료소제비γ‐CuI전환병적공간분변솔,결과현시170,190화210℃츤저온도조건하소제비적전환병,기공간분변솔분별위:4.5,7.2화5.6lp·mm-1,미주결구유조우제고전환병적공간분변솔。
Micro‐columnar structured γ‐CuI scintillation conversion screen with columnar diameter in the micrometer and thick‐ness about 17 μm were prepared by thermal evaporation method on quartz substrates with different temperatures .X‐ray excited luminescence spectra of the screens show two peaks located at 430 nm and near 700 nm ,which correspond to the fast and slow emission components ,respectively .The fast one dominated .The intensity of 430 nm peak decreased as the substrate tempera‐ture rose from 170 ℃ to 210 ℃ .At the same time the intensity of 700 nm band increased .The changes may be attributed to the iodine loss from screen caused by the substrate temperature .The phenomenon of iodine loss was observed by the Rutherford backscattering experiment .The crystal structure of the screens presents (111) preferred orientation ,which is independent of the substrate temperature .As the temperature rose to 210 ℃ ,two weak additional peaks of (220) and (420)γ‐CuI crystal planes in X‐ray diffraction patterns appeared due to the increase in kinetic energy of CuI molecules .The scanning electron microscopy ima‐ges of the screens showed that the columnar structure was improved when the substrate temperature increased from 170 ℃ to 190 ℃ ,but it would be degenerated when the temperature continued to rise to 210 ℃ because of the surface and bulk diffusion effects of the depositing molecules .Finally ,the spatial resolution of the γ‐CuI scintillation screens was measured by knife‐edge method ,and they are 4.5 ,7.2 and 5.6 lp · mm-1 for the screens prepared at the substrates temperatures of 170 ,190 and 210℃ ,respectively .The result shows that micro‐column structure could improve the spatial resolution of γ‐CuI scintillation screen .