计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2015年
4期
176-180,186
,共6页
鲜晓东%石亚麋%唐云建%袁宇鹏%樊宇星
鮮曉東%石亞麋%唐雲建%袁宇鵬%樊宇星
선효동%석아미%당운건%원우붕%번우성
乘客人数统计%轨迹聚类%Hausdorff距离%层次聚类%乘客运动行为%计数判定
乘客人數統計%軌跡聚類%Hausdorff距離%層次聚類%乘客運動行為%計數判定
승객인수통계%궤적취류%Hausdorff거리%층차취류%승객운동행위%계수판정
passenger number statistics%trajectory clustering%Hausdorff distance%hierarchical clustering%passenger movement behavior%counting criteria
针对基于单目视觉的公交乘客人数统计判定方法不稳定、计数结果不准确的现状,结合公交车门附近乘客运动行为的复杂性和多样性,以及乘客运动行为对计数判定方法的干扰,给出一种基于乘客多运动行为分析的计数判定方法。采用轨迹聚类的方式对乘客运动行为进行分析,结合轨迹的空间特征和方向特征计算轨迹距离,并使用层次聚类方法进行聚类。分析聚类结果中每一类别所对应乘客类的运动行为,讨论各乘客类的运动行为对常用计数判定准则的影响,由此提出一种改进的公交车客流计数判定方法。利用采集的乘客上下公交车视频图像进行实验,结果表明,该方法能获得较高的统计精度和较好的稳定性。
針對基于單目視覺的公交乘客人數統計判定方法不穩定、計數結果不準確的現狀,結閤公交車門附近乘客運動行為的複雜性和多樣性,以及乘客運動行為對計數判定方法的榦擾,給齣一種基于乘客多運動行為分析的計數判定方法。採用軌跡聚類的方式對乘客運動行為進行分析,結閤軌跡的空間特徵和方嚮特徵計算軌跡距離,併使用層次聚類方法進行聚類。分析聚類結果中每一類彆所對應乘客類的運動行為,討論各乘客類的運動行為對常用計數判定準則的影響,由此提齣一種改進的公交車客流計數判定方法。利用採集的乘客上下公交車視頻圖像進行實驗,結果錶明,該方法能穫得較高的統計精度和較好的穩定性。
침대기우단목시각적공교승객인수통계판정방법불은정、계수결과불준학적현상,결합공교차문부근승객운동행위적복잡성화다양성,이급승객운동행위대계수판정방법적간우,급출일충기우승객다운동행위분석적계수판정방법。채용궤적취류적방식대승객운동행위진행분석,결합궤적적공간특정화방향특정계산궤적거리,병사용층차취류방법진행취류。분석취류결과중매일유별소대응승객류적운동행위,토론각승객류적운동행위대상용계수판정준칙적영향,유차제출일충개진적공교차객류계수판정방법。이용채집적승객상하공교차시빈도상진행실험,결과표명,해방법능획득교고적통계정도화교호적은정성。
In view of the instability and inaccuracy of bus passenger statistic with monocular vision based method,a new statistic method based on passengers’ multi-movement behavior is proposed,which combines the complexity and variety of passengers’ behavior. Passengers’ movement behavior is analyzed with trajectory clustering algorithm. The trajectory distance which is clustered with hierarchical clustering method is calculated according to the spatial feature and the directional feature of the trajectory. The clustering result corresponds to a certain kind of movement behavior of passenger,the influence of each movement behavior to the common counting criterion is discussed. In a result,the method based on passengers’ multi-movement behavior for bus passenger statistic is proposed. Experimental results based on the video when passengers getting on and getting off show that the method can obtain a high statistical precision and good stability.