计算机辅助设计与图形学学报
計算機輔助設計與圖形學學報
계산궤보조설계여도형학학보
JOURNAL OF COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS
2015年
4期
582-589
,共8页
渐进迭代逼近%几何迭代法%数据拟合%几何设计
漸進迭代逼近%幾何迭代法%數據擬閤%幾何設計
점진질대핍근%궤하질대법%수거의합%궤하설계
Progressive-Iterative Approximation%Geometric Iterative Methods%Data Fitting%Geometric Design
几何迭代法,又称渐进迭代逼近(progressive-iterative approximation, PIA),是一种具有明显几何意义的迭代方法。它通过不断调整曲线曲面的控制顶点,生成的极限曲线曲面插值(逼近)给定的数据点集。文中从理论和应用2个方面对几何迭代法进行了综述。在理论方面,介绍了插值型几何迭代法的迭代格式、收敛性证明、局部性质、加速方法,以及逼近型几何迭代法的迭代格式和收敛性证明等。进而,展示了几何迭代法在几个方面的成功应用,包括自适应数据拟合、大规模数据拟合、对称曲面拟合,以及插值给定位置﹑切矢量和曲率矢量的曲线迭代生成,有质量保证的四边网格和六面体网格生成,三变量B-spline体的生成等。
幾何迭代法,又稱漸進迭代逼近(progressive-iterative approximation, PIA),是一種具有明顯幾何意義的迭代方法。它通過不斷調整麯線麯麵的控製頂點,生成的極限麯線麯麵插值(逼近)給定的數據點集。文中從理論和應用2箇方麵對幾何迭代法進行瞭綜述。在理論方麵,介紹瞭插值型幾何迭代法的迭代格式、收斂性證明、跼部性質、加速方法,以及逼近型幾何迭代法的迭代格式和收斂性證明等。進而,展示瞭幾何迭代法在幾箇方麵的成功應用,包括自適應數據擬閤、大規模數據擬閤、對稱麯麵擬閤,以及插值給定位置﹑切矢量和麯率矢量的麯線迭代生成,有質量保證的四邊網格和六麵體網格生成,三變量B-spline體的生成等。
궤하질대법,우칭점진질대핍근(progressive-iterative approximation, PIA),시일충구유명현궤하의의적질대방법。타통과불단조정곡선곡면적공제정점,생성적겁한곡선곡면삽치(핍근)급정적수거점집。문중종이론화응용2개방면대궤하질대법진행료종술。재이론방면,개소료삽치형궤하질대법적질대격식、수렴성증명、국부성질、가속방법,이급핍근형궤하질대법적질대격식화수렴성증명등。진이,전시료궤하질대법재궤개방면적성공응용,포괄자괄응수거의합、대규모수거의합、대칭곡면의합,이급삽치급정위치﹑절시량화곡솔시량적곡선질대생성,유질량보증적사변망격화륙면체망격생성,삼변량B-spline체적생성등。
Geometric iterative method, also called progressive-iterative approximation (PIA), is an iterative me-thod with clear geometric meaning. Just by adjusting the control points of curves or surfaces iteratively, the limit curve or surface will interpolate (approximate) the given data point set. In this paper, we introduce the geometric iterative method in two aspects, i.e., theory and application. In theory, we present the iterative formats of the interpolatory and approximating geometric iteration methods, respectively, show their convergence and local property, and develop the accelerating techniques. Moreover, some successful applications of the geometric itera-tive methods are demonstrated, including adaptive data fitting, large scale data fitting, symmetric surface fitting, generation of the curve interpolating given positions, tangent vectors, and curvature vectors, generation of the quadrilateral and hexahedral mesh with guaranteed quality, and generation of the trivariate B-spline solid, etc.