计算机辅助设计与图形学学报
計算機輔助設計與圖形學學報
계산궤보조설계여도형학학보
JOURNAL OF COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS
2015年
4期
640-650
,共11页
万源%李欢欢%吴克风%童恒庆
萬源%李歡歡%吳剋風%童恆慶
만원%리환환%오극풍%동항경
人脸识别%局部二值模式%梯度方向直方图%分层特征%特征提取
人臉識彆%跼部二值模式%梯度方嚮直方圖%分層特徵%特徵提取
인검식별%국부이치모식%제도방향직방도%분층특정%특정제취
face recognition%local binary pattern%histogram of oriented gradients%layered feature%feature extraction
针对 LBP 描述子提取的纹理特征有限且不能有效地描述图像边缘和方向信息的问题,提出了 LBP 和 HOG的分层特征融合的方法.首先利用LBP算子提取图像的分层纹理谱特征,然后利用HOG算子提取原始图像的边缘特征和基于分层LBP特征的分层HOG特征,最后将分层LBP特征分别与2种HOG边缘特征融合,得到2种不同的多层融合特征.通过在ORL, Yale和GT人脸库上进行实验,比较了15种算法的识别性能,结果证明了文中方法的有效性;相对于传统的经典降维算法、单一的 LBP 特征提取算法和 HOG 特征提取算法,该方法的识别率有很大的提高,分别达到99%,99.5%和99.14%.
針對 LBP 描述子提取的紋理特徵有限且不能有效地描述圖像邊緣和方嚮信息的問題,提齣瞭 LBP 和 HOG的分層特徵融閤的方法.首先利用LBP算子提取圖像的分層紋理譜特徵,然後利用HOG算子提取原始圖像的邊緣特徵和基于分層LBP特徵的分層HOG特徵,最後將分層LBP特徵分彆與2種HOG邊緣特徵融閤,得到2種不同的多層融閤特徵.通過在ORL, Yale和GT人臉庫上進行實驗,比較瞭15種算法的識彆性能,結果證明瞭文中方法的有效性;相對于傳統的經典降維算法、單一的 LBP 特徵提取算法和 HOG 特徵提取算法,該方法的識彆率有很大的提高,分彆達到99%,99.5%和99.14%.
침대 LBP 묘술자제취적문리특정유한차불능유효지묘술도상변연화방향신식적문제,제출료 LBP 화 HOG적분층특정융합적방법.수선이용LBP산자제취도상적분층문리보특정,연후이용HOG산자제취원시도상적변연특정화기우분층LBP특정적분층HOG특정,최후장분층LBP특정분별여2충HOG변연특정융합,득도2충불동적다층융합특정.통과재ORL, Yale화GT인검고상진행실험,비교료15충산법적식별성능,결과증명료문중방법적유효성;상대우전통적경전강유산법、단일적 LBP 특정제취산법화 HOG 특정제취산법,해방법적식별솔유흔대적제고,분별체도99%,99.5%화99.14%.
Local binary pattern (LBP) has limitation in extracting texture feature and cannot effectively depict the edge and direction information, thus a new method is proposed, called layered fusion with LBP and histogram of oriented gradients (HOG) features. First, LBP operator is adopted to extract the layered texture spectrum feature of an image, and then the edge features of the original image are extracted by using HOG operator, as well as the layered HOG features which are based on the layered LBP. Finally, the layered LBP features with these two different HOG edge features are fused to generate two different layered fusion features. The experiments are implemented on ORL, Yale, GT face databases by comparing fifteen algorithms, which show that the layered fusion features generated by the fusion method of this paper perform much better than the traditional dimension-reduced algorithms, single LBP and single HOG. The corresponding recognition rates of the proposed method are significantly improved, of which the best are 99%, 99.5% and 99.14 %, respectively.