振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2015年
7期
174-177
,共4页
分数导数%黏弹性拱%数值方法%相图%庞加莱截面
分數導數%黏彈性拱%數值方法%相圖%龐加萊截麵
분수도수%점탄성공%수치방법%상도%방가래절면
fractional derivative%viscoelastic arch%numerical method%phase diagram%poincare section
利用分数导数的本构关系建立了黏弹性拱的控制方程,采用Galerkin方法简化了拱的数学模型。提出一种求解含分数算子的非线性方程的数值方法,并利用该方法对控制方程进行求解。考察载荷参数、材料参数对拱动力响应的影响。运用非线性动力学中各种经典的分析方法,如时程曲线、功率谱、相图、庞加莱截面等,判别并揭示了黏弹性拱的丰富的动力学行为。
利用分數導數的本構關繫建立瞭黏彈性拱的控製方程,採用Galerkin方法簡化瞭拱的數學模型。提齣一種求解含分數算子的非線性方程的數值方法,併利用該方法對控製方程進行求解。攷察載荷參數、材料參數對拱動力響應的影響。運用非線性動力學中各種經典的分析方法,如時程麯線、功率譜、相圖、龐加萊截麵等,判彆併揭示瞭黏彈性拱的豐富的動力學行為。
이용분수도수적본구관계건립료점탄성공적공제방정,채용Galerkin방법간화료공적수학모형。제출일충구해함분수산자적비선성방정적수치방법,병이용해방법대공제방정진행구해。고찰재하삼수、재료삼수대공동력향응적영향。운용비선성동역학중각충경전적분석방법,여시정곡선、공솔보、상도、방가래절면등,판별병게시료점탄성공적봉부적동역학행위。
The motion equation governing the dynamical behaviors of a viscoelastic arch was derived.The viscoelastic material was assumed to obey the fractional derivative constitutive relation.The motion equation was simplified by Galerkin method.An effective numerical method for solving the nonlinear equation with fractional operator was developed and the motion equation governing the dynamical behaviors of the viscoelastic arch was solved with the method. The influences of load parameters and material parameters on the dynamic responses of arch were considered respectively. By using some classical methods in nonlinear dynamics,such as the methods of time history curves,power spectrum, phase diagram,Poincare section,etc.,the complex dynamic behaviors of viscoelastic arch were discriminated and revealed.