振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2015年
7期
156-161
,共6页
钟先友%赵春华%陈保家%田红亮
鐘先友%趙春華%陳保傢%田紅亮
종선우%조춘화%진보가%전홍량
最大相关峭度解卷积%重分配小波尺度谱%复合故障%最小熵解卷积
最大相關峭度解捲積%重分配小波呎度譜%複閤故障%最小熵解捲積
최대상관초도해권적%중분배소파척도보%복합고장%최소적해권적
maximum correlated kurtosis deconvolution%reassigned wavelet scalogram%composite fault%minimum entropy deconvolution
针对强噪声环境下旋转机械复合故障信号难于提取与分离的问题,提出了基于最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)和重分配小波尺度谱的旋转机械故障诊断方法。机械信号中存在的噪声会降低重分配小波尺度谱的时频分布可读性,故先要对信号进行MCKD降噪,同时从振动信号中分离出各个故障成分,然后进行Hilbert变换得到包络成分,最后再对包络成分进行重分配小波尺度谱分析,根据尺度图中冲击成分的周期诊断转机械复合故障,算法仿真和应用实例验证了该方法的有效性。
針對彊譟聲環境下鏇轉機械複閤故障信號難于提取與分離的問題,提齣瞭基于最大相關峭度解捲積(Maximum Correlated Kurtosis Deconvolution,MCKD)和重分配小波呎度譜的鏇轉機械故障診斷方法。機械信號中存在的譟聲會降低重分配小波呎度譜的時頻分佈可讀性,故先要對信號進行MCKD降譟,同時從振動信號中分離齣各箇故障成分,然後進行Hilbert變換得到包絡成分,最後再對包絡成分進行重分配小波呎度譜分析,根據呎度圖中遲擊成分的週期診斷轉機械複閤故障,算法倣真和應用實例驗證瞭該方法的有效性。
침대강조성배경하선전궤계복합고장신호난우제취여분리적문제,제출료기우최대상관초도해권적(Maximum Correlated Kurtosis Deconvolution,MCKD)화중분배소파척도보적선전궤계고장진단방법。궤계신호중존재적조성회강저중분배소파척도보적시빈분포가독성,고선요대신호진행MCKD강조,동시종진동신호중분리출각개고장성분,연후진행Hilbert변환득도포락성분,최후재대포락성분진행중분배소파척도보분석,근거척도도중충격성분적주기진단전궤계복합고장,산법방진화응용실례험증료해방법적유효성。
Aiming at the problem that the rotating machinery composite faults signal is difficult to be extracted and segmented under strong noise background,a fault diagnosis method for rotating machinery based on maximum correlated kurtosis deconvolution (MCKD)and reassigned wavelet scalogram was proposed.The noise in the rotating machinery vibration signal would reduce the readability of its time-frequency representation,so the noise was reduced by using MCKD,and the fault components were separated from the vibration signal,and then the envelopes were obtained by Hilbert transform and analyzed with the reassigned wavelet scalogram.The composite faults of rotating machinery were diagnosed according to the periods of impulsire components in the scalogram.Some simulation and application examples validate the effectiveness of the method.