人民黄河
人民黃河
인민황하
Yellow River
2015年
4期
10-13
,共4页
组合预测模型%GM(1,1)模型%遗传神经网络%干旱预测
組閤預測模型%GM(1,1)模型%遺傳神經網絡%榦旱預測
조합예측모형%GM(1,1)모형%유전신경망락%간한예측
combined forecast model%GM (1,1)model%genetic neural network%drought prediction
为提高干旱预测精度,克服单一预测模型的不足,在分析灰色理论和遗传神经网络模型特点的基础上,构建了气象干旱的多尺度组合预测模型。该模型首先提取灾变序列,利用GM(1,1)模型进行拟合和预测,然后采用遗传神经网络对拟合值进行修正,得到训练好的网络结构,最后修正GM(1,1)模型的预测值。利用郑州市1951—2012年月降水数据进行的干旱预测结果表明:针对不同尺度的灾变序列,组合预测模型的预测效果优于GM(1,1)模型和遗传神经网络模型,且模型的平稳性较好。
為提高榦旱預測精度,剋服單一預測模型的不足,在分析灰色理論和遺傳神經網絡模型特點的基礎上,構建瞭氣象榦旱的多呎度組閤預測模型。該模型首先提取災變序列,利用GM(1,1)模型進行擬閤和預測,然後採用遺傳神經網絡對擬閤值進行脩正,得到訓練好的網絡結構,最後脩正GM(1,1)模型的預測值。利用鄭州市1951—2012年月降水數據進行的榦旱預測結果錶明:針對不同呎度的災變序列,組閤預測模型的預測效果優于GM(1,1)模型和遺傳神經網絡模型,且模型的平穩性較好。
위제고간한예측정도,극복단일예측모형적불족,재분석회색이론화유전신경망락모형특점적기출상,구건료기상간한적다척도조합예측모형。해모형수선제취재변서렬,이용GM(1,1)모형진행의합화예측,연후채용유전신경망락대의합치진행수정,득도훈련호적망락결구,최후수정GM(1,1)모형적예측치。이용정주시1951—2012년월강수수거진행적간한예측결과표명:침대불동척도적재변서렬,조합예측모형적예측효과우우GM(1,1)모형화유전신경망락모형,차모형적평은성교호。
In order to enhance the prediction accuracy of the drought and overcome the shortcomings of a single forecasting model,this paper put forward the combined forecast model of meteorological drought as the object,based on the analysis of grey theory and genetic neural net-work. The combined forecast model was used to analyze the monthly rainfall data of Zhengzhou City from 1951 to 2012. Firstly using GM (1, 1)model to fit and forecast the extracted sequences. Secondly using genetic neural network to correct the fitted values of GM (1,1)model and get the trained network structure. Finally using the trained network structure to modify the forecasting value of GM (1,1)model. The re-sults show that for the different scales of catastrophic sequence,the accuracy of the combined forecast model is much higher than that of the GM (1,1)model and genetic neural network and the stability of the model has been enhanced.