陶瓷学报
陶瓷學報
도자학보
JOURNAL OF CERAMICS
2015年
2期
166-171
,共6页
王传运%张亚忠%周宁生%夏熠
王傳運%張亞忠%週寧生%夏熠
왕전운%장아충%주저생%하습
钙长石%多孔材料%工业氧化铝%工业氢氧化铝%性能%显微结构
鈣長石%多孔材料%工業氧化鋁%工業氫氧化鋁%性能%顯微結構
개장석%다공재료%공업양화려%공업경양화려%성능%현미결구
Anorthite%Porous material%Commercial alumina%Commercial aluminium hydroxide%Properties%Microstructure
利用适宜起始物料受热后分解和质量损失可制备钙长石多孔材料。起始物料的特性对其性能的影响而值得研究。分别以工业氧化铝和工业氢氧化铝为氧化铝源,参与了制备钙长石多孔材料并作性能比较。采用TG-DSC考察了起始物料受热过程中的热行为,利用XRD、SEM和EDS分析了显微结构,检测了合成料试样的显气孔率、体积密度和耐压强度。分别以工业氧化铝和氢氧化铝为Al2O3源,前者经1300℃、后者经1250℃烧后合成料的显气孔率分别为35%和54%,耐压强度分别为60 MPa和30 MPa,气孔集中分布尺寸分别为10μm和8μm左右。以工业氢氧化铝为Al2O3源制备的钙长石,同温度下有更高的钙长石转化率,气孔率更高,气孔更小,但强度降低。Al(OH)3分解后生成的氧化铝有更高的反应活性,对钙长石的生成有促进作用。与工业氧化铝为Al2O3源时相比,合成温度可降低50℃左右。
利用適宜起始物料受熱後分解和質量損失可製備鈣長石多孔材料。起始物料的特性對其性能的影響而值得研究。分彆以工業氧化鋁和工業氫氧化鋁為氧化鋁源,參與瞭製備鈣長石多孔材料併作性能比較。採用TG-DSC攷察瞭起始物料受熱過程中的熱行為,利用XRD、SEM和EDS分析瞭顯微結構,檢測瞭閤成料試樣的顯氣孔率、體積密度和耐壓彊度。分彆以工業氧化鋁和氫氧化鋁為Al2O3源,前者經1300℃、後者經1250℃燒後閤成料的顯氣孔率分彆為35%和54%,耐壓彊度分彆為60 MPa和30 MPa,氣孔集中分佈呎吋分彆為10μm和8μm左右。以工業氫氧化鋁為Al2O3源製備的鈣長石,同溫度下有更高的鈣長石轉化率,氣孔率更高,氣孔更小,但彊度降低。Al(OH)3分解後生成的氧化鋁有更高的反應活性,對鈣長石的生成有促進作用。與工業氧化鋁為Al2O3源時相比,閤成溫度可降低50℃左右。
이용괄의기시물료수열후분해화질량손실가제비개장석다공재료。기시물료적특성대기성능적영향이치득연구。분별이공업양화려화공업경양화려위양화려원,삼여료제비개장석다공재료병작성능비교。채용TG-DSC고찰료기시물료수열과정중적열행위,이용XRD、SEM화EDS분석료현미결구,검측료합성료시양적현기공솔、체적밀도화내압강도。분별이공업양화려화경양화려위Al2O3원,전자경1300℃、후자경1250℃소후합성료적현기공솔분별위35%화54%,내압강도분별위60 MPa화30 MPa,기공집중분포척촌분별위10μm화8μm좌우。이공업경양화려위Al2O3원제비적개장석,동온도하유경고적개장석전화솔,기공솔경고,기공경소,단강도강저。Al(OH)3분해후생성적양화려유경고적반응활성,대개장석적생성유촉진작용。여공업양화려위Al2O3원시상비,합성온도가강저50℃좌우。
Porous anorthite can be prepared by taking advantage of the decomposition and mass loss of suitable starting materials. Characteristics of the starting materials will influence properties of the synthesized anorthite and are thus worth investigating. Using commercial alumina or aluminum hydroxide as alumina source, porous anorthite was prepared and the properties of the samples were compared. The thermal behavior of the adopted starting materials was investigated by means of TG-DSC. The microstructure was observed and analyzed by means of XRD, SEM and EDS. The apparent porosity (AP), bulk density and cold compressive strength (CCS) of the synthesized porous anorthite were measured. The properties of the synthesized porous anorthite, using the alumina and the aluminum hydroxide as Al2O3 source respectively and ifred at 1300 °C and 1250 °C respectively, were compared, highlighted by AP 35% vs 54%, CCS 60 MPa vs 30 MPa, pore sizes concentrated around 10 μm vs 8 μm, respectively. Using the aluminum hydroxide leads to higher anorthite conversion at the same ifring temperature, higher AP, smaller pore size, and lower strength. The alumina derived from the decomposition of aluminum hydroxide has higher reactivity to promote anorthite formation. Compared with using commercial alumina, the synthesizing temperature can be lowered by 50 °C or so by using commercial aluminum hydroxide as Al2O3 source.